Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Теория упругости Уравнения в координатах сферических

Уравнения теории упругости в цилиндрических и сферических координатах  [c.38]

Задача теории упругости неоднородного тела формулируется и решается аналогично задаче теории упругости однородного изотропного или анизотропного тела. Различие между ними состоит лишь в том, что в физических уравнениях (законе упругости) механические характеристики являются заданными непрерывными функциями координат. Здесь необходимо еще раз подчеркнуть, что при этом деформации тела считаются малыми и предполагается выполнение обобщенного закона Гука. Очевидно, что в случае неоднородного тела остаются справедливыми общие уравнения механики сплошной среды соотношения Коши между деформациями и перемещениями и т. д. Подробное изложение теории напряжений и деформаций приводится в многочисленных книгах [11, 100, 138 и др.], поэтому ниже они даются без вывода в прямоугольной системе координат х, у, z) в объеме, необходимом для дальнейшего изложения. Эти же уравнения в других системах координат (цилиндрической, сферической) можно найти в указанных выше и других изданиях.  [c.32]


В этой книге излагается общая теория криволинейных координат и ее применения в механике, в учении о теплоте и теории упругости разъясняется преобразование уравнений теории упругости к криволинейной системе координат и в качестве примера исследуется деформация сферической оболочки. В заключительных главах Ламе подвергает критическому анализу принципы, на основе которых строится вывод основных уравнений теории упругости. Теперь он уже не одобряет вывод уравнений по способу Навье (с привлечением гипотезы молекулярных сил), а отдает предпочтение методу Коши (в котором используется лишь статика твердого тела). Затем он принимает гипотезу Коши, согласно которой компоненты напряжения должны быть линейными функциями компонент деформации. Для изотропных материалов принятие этой гипотезы приводит к сокращению кисла необходимых упругих постоянных до двух, находимых из испытаний на простое растяжение и простое кручение. Таким путем все не-  [c.144]

Многослойная структура с полостью или упругим включением канонической формы. Рассмотрим случай, когда полость (упругое включение) целиком расположено в одном из элементов многослойной структуры и имеет границу, представляющую собой координатную поверхность в ортогональной криволинейной системе координат (цилиндрической, сферической, эллипсоидальной). В этом случае при исследовании задачи о динамическом воздействии плоского жесткого штампа на поверхность пакета слоев или многослойного полупространства с полостью или включением целесообразно использовать принцип суперпозиции. Это позволяет точным образом свести краевую задачу динамической теории упругости к системе интегро-функциональных уравнений, при решении которой можно использовать, в зависимости от расположения неоднородности, различные методы анализа.  [c.311]

Для описания встречающихся в теории упругости векторных и тензорных величин будут параллельно применяться обычная в технической механике форма записи, а также тензорная форма записи, в которой уравнения имеют компактный вид. Но при этом будем ограничиваться тензорами в декартовых координатах, а общее описание в произвольных криволинейных координатах с помощью тензорного исчисления использоваться не будет. Там, где это представляется необходимым, будут применяться цилиндрические и сферические координаты, а иногда отдельные уравнения будут формулироваться в так называемой векторной форме записи (которая во многих разделах механики сплошной среды сегодня является обычной). Физическое содержание теории всегда будет ставиться на передний план и не затемняться математическим формализмом.  [c.10]


Часто весьма целесообразно оперировать основными уравнениями теории упругости в криволинейных ортогональных системах координат. Правда, это требует применения тензорного исчисления в общей форме, от которого в этой книге сознательно отказываются. Однако необходимые для дальнейшего основные соотношения для наиболее часто встречающихся криволинейных координат — цилиндрических и сферических приведены без вывода К  [c.71]

Присовокупив к формулам (22.12), (22.13) соотношения закона Гука, которые могут быть написаны по аналогии с (22.7), получим систему уравнений теории упругости в сферических координатах. На граничных условиях останавливаться не будем.  [c.235]

Для упругих сферических молекул можно также показать, что начало координат /с = О является изолированной точкой спектра этот результат кажется разумным и для потенциалов со строго конечным радиусом взаимодействия. Но для степенных потенциалов с угловым обрезанием и для кинетических моделей с постоянной частотой столкновений точка к О уже не изолирована (можно показать, что непрерывный спектр состоит по крайней мере из значений —v (1)/( -е)). Спектр допустимых значений был подробно исследован для модельных уравнений, а в некоторых случаях были решены упомянутые выше задачи 1 и 2 (Черчиньяни [7, 10—12]) соответствуюш ая теория будет изложена в следую-пцей главе.  [c.167]

Геометрическое преобразование инверсии в пространстве связывает клин и сферическую линзу. В работах [43, 50, 56] показывается, что схожи и математические методы решения задач теории упругости для этих тел. В [50] метод сведения задачи теории упругости к обобщенной по И. И. Векуа краевой задаче Гильберта распространяется на смешанную пространственную задачу для усеченного шара, сферическая поверхность которого жестко защемлена, а на срезе заданы нормальные напряжения, а также на аналогичную задачу для полупространства со сферической выемкой или выступом. Используется обобщенное комплексное интегральное преобразование Мелера-Фока и тороидальные координаты rj, (f, причем Г] = onst — уравнения поверхности тела. Системы функциональных уравнений этих задач преобразуются к системам сингулярных интегральных уравнений. Излагаемая методика применима к исследованию задач для произвольной упругой сферической линзы, т.е. тела, образованного пересечением двух сфер разного радиуса.  [c.193]

Остановимся подробнее на получении системы интегро-функциональ-ных уравнений контактной задачи. Использование принципа суперпозиции предполагает возможность получения аналитического решения краевой задачи динамической теории упругости с однородными граничными условиями в напряжениях для составляющих многослойную область с каноническим включением элементов. Таковыми являются однородный упругий слой, однородное упругое полупространство, полость в безграничном пространстве и упругое включение, граница которого тождественна границе полости. Решение задач для однородного слоя (полупространства) строится методом интегральных преобразований с использованием принципа предельного поглощения и может быть получено в виде контурного несобственного интеграла [2,4,14]. В зависимости от постановки задачи (пространственная, плоская, осесимметричная) получаем контурные интегралы типа обращения преобразования Фурье или Ханкеля [16]. Решение задачи для пространства с полостью, описываемой координатной поверхностью в ортогональной криволинейной системе координат, получаем в виде рядов по специальным функциям (сферическим, цилиндрическим (Ханкеля), эллиптическим (Матье)) [17]. При этом важно корректно удовлетворить условиям излучения, для чего можно использовать принцип излучения. Исключение составляет случай горизонтальной цилиндрической полости при исследовании пространственной задачи. Здесь необходимо использовать метод интегральных преобразований Фурье [16] вдоль образующей цилиндра и принцип предельного поглощения [3] для корректного удовлетворения условиям излучения энергии вдоль образующей.  [c.312]


В 6 изложен, как нам представляется, наиболее простой приём составления основных дифференциальных операций в криволинейных координатах. Мы ограничились случаем ортогональных координат, как наиболее важным для приложений. В 7 этот приём применён для записи в ортогональных криволинейных координатах основных соотношений механики сплошной среды, в том числе для составления условий сплошности. Другой вывод условий сплошности (в любых криволинейных координатах) дан в статьях Т, Н. Блинчикова Дифференциальные уравнения равновесия теории упругости в криволинейной координатной системе (Прикл. матем. и мех., 2, 1938, стр. 407) и В. 3. Власова Уравнения неразрывности деформаций в криволинейных координатах (там же, 8, 1944, стр. 301). Запись уравнений сплошности в сферических и цилиндрических координатах приведена в книге В. 3. Власова Общая теория оболочек (Гостехиздат, 1949).  [c.69]

Введенке. В этой главе мы рассмотрим решения уравнений равновесия изотропного упругого телд при ПОМОЩИ разложений в ряды гармонических функций и главным образом в ряды сферических функций. Мы начнем с некоторых специальных типов решений, полученных при помощи сферических функций и дающих важные, результаты, касающиеся равновесия шара, которые являются началом приложений теории упругости к геофизике. Мы будем следовать Кельвину, который выразил общее решение задачи 1) о шаре при помощи сферических функций, рассматривая их как функции декартовых координат и избегая преобразования к полярным координатам. После этого мы дадим некоторые применения рядов гармонических функций, отличных от сферических функций, для интегрирования уравнений равновесия.  [c.261]

Волны рэлеевского типа могут существовать и на сферической поверхности. Задача о гармонических волнах такого типа на поверхности идеально упругой сферы радиуса Я рассматривалась в работе [25]. Под волнами рэлеевского типа понималось точное решение уравнений теории упругости, удовлетворяющее условию отсутствия напряжений на поверхности сферы и имеющее характер установившихся монохроматических поверхностных волн. В полюсах сферы 0 = 0 и 0 = я (г, ф, 0 — сферические координаты) располагались источник и СГОК волн, соответствующие особым точкам решений уравнений. Предполагалось, что источник и сток вполне эквивалентны один другому и волны распространяются от полюсов с равными амплитудами в +0 и —0 направлениях, так что наложение их позволяет образовать стоячие волны, регулярные во всех точках сферы.  [c.50]


Смотреть страницы где упоминается термин Теория упругости Уравнения в координатах сферических : [c.144]   
Прочность, устойчивость, колебания Том 1 (1966) -- [ c.43 ]



ПОИСК



511 -513 -----в теории сферической

Координаты сферические

Теории Уравнения

Теория упругости

Упругие для сферической

Упругость Теория — см Теория упругости

Уравнения Уравнения упругости

Уравнения в координатах

Уравнения в сферических координатах

Уравнения теории упругости

Уравнения упругого КА

Уравнения упругости



© 2025 Mash-xxl.info Реклама на сайте