Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Периодические решения уравнений малых возмущений

Периодические решения уравнений малых возмущений. Независимые переменные х , Хз и т входят в систему (5.2.2) только через частные производные. Поэтому следует ожидать, что существуют решения вида  [c.99]

Может возникнуть вопрос, гарантирует ли соблюдение условия динамической устойчивости положения равновесия (5 > 8J устойчивость исследуемого режима вынужденных колебаний по отношению к малым возмущениям (устойчивость в малом ). На этот вопрос следует ответить положительно. Действительно, подставляя, например, в уравнение (6.50) сначала г/ = г/ +1 (О (где — периодическое решение, а g (i) — некоторое отклонение от него), а затем у° и вычитая второе уравнение из первого, получаем уравнение в вариациях  [c.268]


Решение исходной системы уравнений неразрывности, движения и энергии можно получить методом разложения в ряд по малому параметру. Согласно теории пограничного слоя [41 ] уравнение нестационарного течения в пограничном слое можно разделить на уравнения для стационарного течения и нестационарного возмущающего воздействия. Для периодического возмущения, которое имеет место при гармоническом колебании пластины, решение уравнений динамического и температурного пограничных слоев можно представить в виде ряда  [c.152]

ТО в силу соотношения (3.1) уравнение дЖх/дХ = О будет иметь столько корней, для которых > О, сколько корней, для которых < 0. Это равносильно тому, что при малых значениях /х ф О возмущенная система будет иметь ровно столько устойчивых в линейном приближении периодических решений, сколько неустойчивых. В этой ситуации обычно говорят, что на невозмущенном резонансном инвариантном торе  [c.92]

В 17 и 19 мы подошли к зонной модели, рассматривая брэгговское отражение. Непрерывный спектр Е (Л) свободных электронов в периодическом поле ионов решетки расщепляется на зоны. В 19 наше рассмотрение было ограничено случаем слабых потенциалов. Только в этом случае можно считать V г) в уравнении Шредингера малым возмущением. В этом приближении зонная структура вытекает из решения секулярного определителя в первом приближении теории возмущений  [c.124]

Подчеркнем, что поскольку здесь речь идет о малых возмущениях на фоне периодического движения, то они описываются линейным уравнением с периодическими коэффициентами. Для фундаментальной матрицы решений и 1) этого уравнения справедлива теорема Флоке (см. гл. 11) и 1) = Ф( )ехр(Л ), где Ф(i) — периодическая с периодом Т матрица. Собственные значения матрицы Л называются ха-  [c.318]

Кстати сказать, это условие геометрически означает отсутствие перегиба у кривой Яо(7) =Л в точке /=/о. Таким образом, уравнение йН =а будет иметь столько же корней, для которых а > О, сколько корней, для которых а, <0. Это равносильно тому, что при малых значениях е О возмущенная система будет иметь ровно столько периодических решений эллиптического типа, сколько она имеет решений гиперболического типа. В этой ситуации обычно говорят, что при распаде невозмущенного инвариантного тора /=/° рождаются пары изолированных периодических решений. Согласно результатам КАМ-те-ории, траектории типичных эллиптических периодических решений окружены инвариантными торами. Гиперболические периодические решения имеют две инвариантные поверхности (сепаратрисы), заполненные решениями, асимптотически приближающимися к периодической траектории при /- - оо. Различные асимптотические поверхности могут пересекаться, образуя в пересечении довольно запутанную сеть (см. рис. 44). Поведение асимптотических поверхностей будет подробно обсуждаться в следующем параграфе.  [c.231]


Исследование процесса развития регулярных волновых течений из малых возмущений и устойчивости этих течений [25, 26] показало, что оптимальные режимы обладают определенными преимуществами перед другими и с наибольшей вероятностью реализуются в эксперименте. В этих работах применялся прямой метод для исследования волновых режимов. Форма профиля скорости в поперечном сечении задавалась заранее, затем из полной краевой задачи, описывающей течение жидкости, выводилась система нелинейных уравнений для формы поверхности и локального расхода жидкости. Были получены нелинейные периодические решения этой системы, соответствующие волновым движениям. В работе [27] методом Крылова—Боголюбова (см. [28]) уравнение для возмущения, полученное после задания параболического профиля скорости, решено в первом приближении. По существу, это один из возможных частных случаев более общего решения работы [25], где исчерпаны возможности применения прямых методов к отысканию волновых режимов. В другой работе [29] выявлена возможность существования некапиллярных волн на поверхности тонкого слоя вязкой жидкости. Пока найдено только качественное согласие теоретического профиля гравитационной волны с экспериментальным.  [c.8]

СИСТЕМЫ А. М. ЛЯПУНОВА ). В системах Ляпунова отсутствует малый параметр, на который в квазилинейных системах умножены нелинейные члены. Большей частью это консервативные системы, обладающие в качестве первого интеграла интегралом сохранения полной механической энергии. При известных условиях такие системы допускают периодическое решение, разлагающееся в ряды по степеням начального значения одной из координат в предположении, что это значение достаточно мало. Вопрос о существовании периодического решения в таких системах был связан у Л. М. Ляпунова с вопросом об устойчивости невозмущенного движения системы, определяемого нулевыми значениями координат в одном из критических случаев , именно, когда характеристическое уравнение имеет пару чисто мнимых корней. Устанавливая условия периодичности возмущенного движения системы, можно, следуя Л. М. Ляпунову, получить также в этих условиях условия устойчивости невозмущенного движения в этом довольно часто встречающемся критическом случае. Общая теория нелинейных систем Ляпунова вместе с обобщением этой теории на класс систем, близких к системам Ляпунова, развита И. Г. Малкиным. Из монографии И. Г. Малкина [31] мы и заимствуем изложение теоремы Ляпунова о существовании и форме периодических решений рассматриваемых систем, приводимой без доказательства.  [c.545]

Заметим, что основное содержание методов малого параметра [34] и асимптотических методов [20] может трактоваться как исследование специфических бифуркаций и возмущений. Так, теория периодических движений Пуанкаре решает вопрос о рождении периодических движений от семейств периодических движений, теория квазилинейных систем с быстровращающимися фазами — вопрос о рождении интегральных тороидальных многообразий от многопараметрических семейств тороидальных многообразий, теория дифференциальных уравнений с малыми параметрами при старших производных исследует сингулярные возмущения решений дифференциальных уравнений и т. д.  [c.267]

Решение полученных уравнений (1) — (3), (5) выполнено на ЭВМ. Рассмотрено функционирование стана в режимах разгона и квазиустановившегося движения, когда сила сопротивления моделируется внешней силой трения. Особенностью первого этапа является малое изменение параметров системы и большая скорость изменения внешних сил, особенностью второго этапа — значительное изменение параметров системы и периодическое кинематическое возмущение [3]. Анализ полученных решений показывает (рис. 1), что происходит нарастание коэффициентов динамичности в участках от тягового органа (1) к приводному двигателю 6). С уменьшением времени разгона и ростом пика усилия волочения коэффициенты динамичности сильно увеличиваются.  [c.134]


Исследование возмущенного движения сводится к исследованию уравнений (6.3.1) движения вектора L. В решении этих уравнений на вековое движение (6.2.4) накладываются еще периодические колебания о и р с небольшой (при малых значениях Nq) амплитудой и периодом, сравнимым с 2я. Так как v меняется сравнительно быстро, а а—медленно, то а — v меняется быстро и поэтому многократно проходит через экстремальные значения (в тех точках, где х = а — v имеет значе-  [c.210]

Замечание 1. Изложенный метод решения дифференциальных уравнений для элементов Лагранжа (4.8.06) получил в специальной литературе название метода Лагранжа вычисления вековых возмущений , хотя, как видно из общего решения (4.8.08), элементы Лагранжа изменяются периодическим образом. Это объясняется тем, что в уравнениях для элементов сохранена лишь вековая часть возмущающей функции с точностью до вторых степеней малых величин.  [c.426]

Периодические решения уравнений малых возмущений 99 Пограничный слой на плоской пластинке 88 неустойчивость и переход к турбулентности 114 стабилизация 112 устойчивость 101 Прандтль 65, 78, 81 Претч 22, 120  [c.191]

В этой главе описываются некоторые методы, приложимые к системам, уравнения движения которых не могут быть решены точно, но вместе с тем некоторая упрощенная задача — называемая невозмущеиной задачей — допускает точное решение. При этом предполагается, что различие между интересующей нас возмущенной системой и упрощенной невозмущенной системой может рассматриваться как малое возмущение. В первом параграфе рассматриваются прямые методы трактовки возмущений эти методы используются для исследования ангармонического осциллятора. Во втором параграфе излагается каноническая теория возмущений, на которой основывается кваи-товомехаинческая теория возмущений. Рассмотрен также кратко вопрос о секуляриых и периодических возмущениях.  [c.182]

Гессоу и Крим [G.62] вывели уравнения махового движения на переходном режиме и предложили метод численного решения этих уравнений. Авторы рассматривали шарнирный винт с относом ГШ, а также винт с качающейся втулкой. Аэродинамические характеристики сечений были заданы в общем виде l = i a, М) и d = d(a, М), а углы взмаха, притекания и установки не считались малыми. Уравнение махового движения выведено из условия равновесия моментов аэродинамических, инерционных, центробежных сил и веса. Численное решение было получено методом Рунге—Кутта с использованием ЦВМ. Работа [G.62] проводилась с целью исследования динамической устойчивости махового движения (при возмущении движения на переходном режиме) и аэродинамических характеристик несущего винта (при возмущении установившегося периодического решения). Численное решение позволяет исследовать аэродинамические характеристики сечений в общем виде с учетом влияния срыва, сжимаемости и зоны обратного обтекания (если имеются соответствующие характеристики сечений).  [c.260]

К полученной натуральной системе можно применить изложенные выше результаты. При к > ш область возможных движений совпадает со всей сферой Пуассона. Поскольку на двумерной римановой сфере существуют, по крайней мере, три различные замкнутые песамопересекающиеся геодезические, то в этом случае уравнения пониженной системы имеют шесть различных периодических решений [57] . Если задача мало отличается от интегрируемого случая Эйлера-Пуансо, то эти решения суть возмущения постоянных вращений вокруг главных осей эллипсоида инерции (см. 2, 3 гл. IV).  [c.145]

Условие 2) теоремы 1 существенно для наличия невырожденных инвариантных торов возмущенной системы. Дело в том, что при малом возмущении функции Г амильтона изоэнергетически невырожденные периодические решения не исчезают, а переходят в периодические решеиия того же периода. Для инвариантных торов размерности m 2 это уже не так. В работах В. К. Мельникова [128], Ю. Мозера [129], С. Граффа [198] показано, что гиперболические приводимые горы с сильно несоизмеримым набором частот (условие (Ю.4)) сохраняются при возмущении уравнений Гамильтона. Однако аналогичный результат для негиперболических инвариантных торов (например, устойчивых) в общем случае не удается получить даже на формальном уровне (исключение составляют случаи, когда т=1и п=п — 1). Обсуждение этих вопросов можно найти в работе Ю Мозера [129].  [c.240]

Тогда при всех значениях е уравнения Кирхгофа имеют частный интеграл Гесса—Аппельрота Г = т 02 — 01 тзу/аз - 02. При малых значениях параметра е сепаратрисы задачи Эйлера Гк = = Д (А = 1,2,3), F = 0 останутся сепаратрисами возмущенных периодических решений (4.4).  [c.282]

Остановимся теперь на некоторых результатах нелинейного расчета конечно-амплитудных режимов. Как уже указывалось, в области F > F стационарный плоскопараллельный режим течения невозможен. Однако в этой области могут в принципе существовать другие режимы, приводящие к увеличению теплоотвода. Вопрос этот может быть решен лишь на основе полных нелинейных уравнений (28.2). Двумерное периодическое по z решение этих уравнений находилось численно методом конечных разностей в работе [24]. Расчеты проделаны для Рг = 1 (реагирующий газ). Фиксировались параметр Z = О и волновое число периодасческой структуры = 1,4 в районе минимума нейтральной кривой (критическое значение слабо зависит от параметров задачи). В численных экспериментах При некоторых значениях Gr и F задавалось малое начальное возмущение и наблюдалась его эволюция со временем. Таким путем удается получить предельные установившиеся режимы, разумеется, в тех случаях, когда они существуют.  [c.191]


Опыт лежит в основании законов механики решения конкретных задач прямо или косвенно проверяются опытным путем. Но опыт, кроме того, во многих случаях позволяет сформулировать постановку задачи и внести в нее разумные упрош,ения. В результате наблюдений над каким-нибудь явлением (движением какого-либо объекта) мы можем получить предварительные сведения ( предварительную информацию ). Это дает нам возможность уяснить себе в общих чертах характер движения. Так, например, наблюдения над движениями небесных тел показывают, что их движения не вполне точно согласуются с законами Кеплера налицо малые отклонения от основного кеплеровского движения. Движение какой-либо системы может оказаться наложением колебательного, близкого к периодическому, движения на некоторое среднее движение. Амплитуды колебаний могут либо сохранять свою величину в течение достаточно продолжительного времени, либо заметно затухать. Наблюдение за движением волчка указывает нам на стабилизирующее значение быстрого собственного вращения и т. п. Подобная предварительная информация позволяет в ряде случаев сравнить величины членов в уравнениях движения и, отбрасывая второстепенное, выделить главное. Таким образом, выделяется основное — невозл /ы<е ное — состояние движения (это может быть, в частности, состояние покоя), на которое накладываются возмущения. Подобное выделение имеет смысл, если сами возмущения (приращения координат точек и приращения скоростей) численно малы ).  [c.427]


Смотреть страницы где упоминается термин Периодические решения уравнений малых возмущений : [c.97]    [c.225]    [c.26]    [c.239]    [c.143]    [c.5]    [c.152]    [c.147]    [c.129]   
Теория гидродинамической устойчивости (1958) -- [ c.99 ]



ПОИСК



Возмущение

Возмущение малое

Возмущения периодические

Решение периодическое

Уравнения для возмущений



© 2021 Mash-xxl.info Реклама на сайте