Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Тороидальные интегральные многообразия

Выбранный выше специальный способ возмущений показывает возможность перехода от тороидального интегрального многообразия с каким-то синхронизмом на нем к движению, названному стохастическим синхронизмом.  [c.356]

Для простого синхронизма соответствующие фрагменты разбиения плоскости на инвариантные кривые изображены на рис. 7.113 и 7.114. Рис. 7.113 соответствует случаю, когда слияние седел и узлов происходит у обычного синхронизма с гладким тороидальным интегральным многообразием, а на рис. 7.114 — с негладким.  [c.366]


Как следует из всего сказанного, общий переход от обычного синхронизма к стохастическому может происходить двумя способами. Первый происходит в результате изменения хода сепаратрисных кривых седловых неподвижных точек и происходит через нх касание (см. рис. 7.110). Второй в результате нарушения гладкости тороидального интегрального многообразия синхронизма и последующего слияния седел и узлов (рис. 7.111 и 7.114).  [c.368]

Тороидальные интегральные многообразия  [c.119]

Заметим, что основное содержание методов малого параметра [34] и асимптотических методов [20] может трактоваться как исследование специфических бифуркаций и возмущений. Так, теория периодических движений Пуанкаре решает вопрос о рождении периодических движений от семейств периодических движений, теория квазилинейных систем с быстровращающимися фазами — вопрос о рождении интегральных тороидальных многообразий от многопараметрических семейств тороидальных многообразий, теория дифференциальных уравнений с малыми параметрами при старших производных исследует сингулярные возмущения решений дифференциальных уравнений и т. д.  [c.267]

Из предыдущего ясно, что в окрестности неподвижных точек Ои Ог,. .., Ор и их инвариантных кривых в случае точечного отображения могут существовать сложные седловые инвариантные множества. В случае дифференциальных уравнепий аналогом такого множества могут быть только совпадающие попарно кривые 5+ и 8 . При разрушении этого слияния могут возникнуть либо внутри петель, либо вне их устойчивые периодические движения. Такой же фазовый портрет для точечного отображения на секущей поверхности отвечал бы появлению тороидальных интегральных многообразий у исходной системы, в которой взята эта секущая. Вносит ли что-нибудь новое в эту картину возможность возникновения сложного седлового инвариантного множества Оказывается, вносит. Чтобы придать конкретный смысд этому различию, будем рассматривать переменные на секущей плоскости как разность фаз с неким внешним периодическим воздействием и результирующую амплитуду колебаний, возникающих в результате зтого внешнего воздействия. При этом переход к дифференциальному уравнению можно трактовать, например, как результат использования метода усреднения. Если речь идет о фазовом портрете дифференциального уравнения, то возможные общие случаи — это либо синхронизм фаз и постоянство амплитуды (устойчивые состояпия равновесия), либо периодическое изменение разности фаз и величины амплитуды.  [c.157]


Интегральные двумерные тороидальные многообразия естественно возникают при бифуркации периодического движения с переходом через поверхность Как следует из предыдущего параграфа (теорема 5.5), при определенных условиях переход через бифуркационную поверхность сопровождается отделением от периодического движения тороидального двумерного многообразия. Тороидальное двумерное интегральное многообразие на своей поверхности может нести самые разнообразные фазовые портреты, которые могут претерпевать бифуркации, не сопровождающиеся разрушением несущего тора. Помимо этого, возможны бифуркации, при которых тор как гладкая интегральная поверхность исчезает. Пути разрушения тора достаточно многообразны. Среди них особый интерес представляют случаи, когда тор разрушается как целое. Бифуркации тора как целого аналогичны бифуркациям периодического движения типов Л +1, N-1 и Л ф. Однако их исследование по образцу исследования бифуркаций периодических движений наталкивается на новую трудность, поскольку приведение к нормальной форме уравнений в окрестности тора предполагает приводимость линеаризованных уравнении в окрестности тора к лилейным дифференциальным уравнениям с постоянными коэффициентами. Возможен другой подход к рассмотрению бифуркай,ий тора как целого. В основе его лежит сведение задачи о бифуркациях двумерного тора к задаче о бифуркациях инвариантной замкнутой кривой точечного отображения. Для этого разрежем тор секущей поверхностью так, чтобы в сечении получилась замкнутая кривая Г. Фазовые траектории  [c.119]


Смотреть страницы где упоминается термин Тороидальные интегральные многообразия : [c.328]    [c.200]    [c.349]   
Смотреть главы в:

Стохастические и хаотические колебания  -> Тороидальные интегральные многообразия



ПОИСК



Интегральное многообразие

Многообразие

Тороидальность



© 2025 Mash-xxl.info Реклама на сайте