Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Теория нелинейных оптических сре

ПРИБЛИЖЕННЫЙ МЕТОД В ДИФРАКЦИОННОЙ ТЕОРИИ НЕЛИНЕЙНО-ОПТИЧЕСКИХ ПРЕОБРАЗОВАТЕЛЕЙ.  [c.65]

Вторая часть посвящена квантовомеханической теории нелинейных оптических явлений.  [c.6]

Настоящая глава содержит самые необходимые сведения из нелинейной электродинамики, теории нелинейных оптических восприимчивостей материальных сред и нелинейной лазерной спектроскопии, на которых базируется очерк диагностических возможностей нелинейно-оптического взаимодействия лазерного излучения с различными средами, приведенный в гл. IV.  [c.184]


Основные положения линейной оптики, необходимые для понимания предмета, изложены в 1 главе. Глава 2 посвящена теории нелинейных оптических взаимодействий. Главный акцент здесь сделан на детальный разбор практически интересных задач вместе с тем следует подчеркнуть, что здесь нет претензий на абсолютную общность или строгость. Важный вопрос о согласовании фаз при нелинейных волновых взаимодействиях рас смотрен в гл. 3. Успешное применение методов нелинейной оптики в приборостроении в значительной степени зависит от наличия соответствующих нелинейных материалов. Вопрос о материалах нелинейной оптики рассмотрен в гл. 4, а в приложении дан обширный список таких материалов и их свойств. Поскольку исследования материалов для нелинейной оптики продолжаются, вполне возможно, что к моменту выхода книги из печати этот список окажется неполным. Остальные главы книги посвящены детальному рассмотрению явлений генерации второй оптической  [c.14]

Температурная настройка на фазовый синхронизм 89 Теория нелинейных оптических сред 98  [c.258]

Успешные эксперименты с оптическими солитонами, результаты которых не только качественно, но и количественно согласуются с теорией, стимулировали развитие новых направлений в экспериментальных и теоретических исследованиях. Перечислим основные из них 1) управление огибающей и спектром пикосекундных импульсов, включая их сжатие с переходом в фемтосекундный диапазон 2) изучение распространения солитонов на сверхдальние расстояния с компенсацией потерь 3) создание солитонных лазеров 4) генерация в световодах импульсных последовательностей с предельно высокой частотой повторения 5) нелинейно-оптическая фильтрация. В последующих параграфах мы обсудим основные результаты, полученные по этим направлениям.  [c.204]

В настоящем параграфе мы сосредоточим внимание на статистических задачах теории оптических солитонов. Интерес к этой проблематике связан с решением таких практически важных вопросов, как исследование влияния флуктуаций параметров исходных импульсов на предельную скорость передачи информации в солитонном режиме и использование световодов в качестве нелинейных фильтров, улучшающих пространственно-временную структуру излучения. С точки зрения стохастической теории нелинейных волн принципиальное значение имеет вопрос о возможности формирования солитонов из оптического шума и о взаимосвязи статистических характеристик исходного сигнала и сформировавшихся солитонов.  [c.225]

Содержание пособия соответствует действующей программе курса общей физики для физических специальностей вузов. От существующих учебных пособий оно отличается тем, что в нем в сравнительно небольшом объеме наряду с традиционными вопросами строже и подробнее, чем это обычно принято, рассматриваются статистические и когерентные свойства квазимонохроматического излучения, спектральное разложение, электронная теория дисперсии, оптические резонаторы, разрешающая сила оптических и спектральных приборов, фотоэлектрические измерения, основы нелинейной оптики. Большое внимание уделяется объяснению свойств лазерного излучения и применению лазеров в оптическом эксперименте. Изложение учебного материала проводится на основе электромагнитной теории света, с соблюдением требования единства теории и эксперимента, обязательного при изучении курса общей физики.  [c.6]


Очевидно, существует необходимость в учебном пособии, в котором были бы систематически изложены основы теории взаимодействия мощных световых потоков с материальными средами и описаны наиболее важные нелинейные оптические явления.  [c.5]

После создания мощных квантовых генераторов на оптических частотах (лазеров) возникла и в последние годы бурно развивается самостоятельная область исследований — нелинейная оптика. Понятие нелинейная оптика охватывает все явления в области высоких (оптических) частот, связанные с нелинейностью материальных уравнений в системе уравнений Максвелла. Большой интерес к этому разделу физики объясняется многими причинами. Нелинейная оптика создала новые возможности для изучения поведения ядер, атомов, молекул и твердых тел в электрических полях высокой напряженности. Кроме того, были найдены новые применения теории излучения и сформулированы законы распространения электромагнитных волн в нелинейных средах. Лазеры нашли необычайно широкие применения в самых различных областях науки и техники. При помощи нелинейных оптических эффектов можно получить новую информацию об отдельных атомах и молекулах и об их взаимодействии в плотных средах. На основании различных нелинейных оптических эффектов удалось создать новые когерентные источники света высокой интенсивности, частично с перестраиваемыми частотами. Кроме того, методы нелинейной оптики могут служить основой для развития других нелинейных теорий.  [c.8]

В настоящем томе для описания нелинейных оптических явлений применяется квантовая теория в формулировке Дирака. Основные определения и законы этой системы понятий сопоставлены в В2.1. Мы будем на них ссылаться позднее, не прерывая изложения конкретных проблем НЛО включением общих квантовомеханических закономерностей. Мы будем также опускать доказательства и далеко идущие интерпретации, ограничиваясь указанием учебной литературы [В2.-1, В2.-2]. В В2.2 будет рассмотрено применение основополагающих квантовомеханических закономерностей к определенным общим проблемам, соответствующие результаты понадобятся для квантовомеханического описания поля излучения и взаимодействия излучения с атомными системами.  [c.71]

Экспериментальное и теоретическое изучение нелинейных оптических эффектов в примесных кристаллах будет, по-видимому, сильно расширяться. Наряду с развитием общей теории нелинейных эффектов необходимо разработать теорию проявления колебаний в этих эффектах.  [c.32]

Полуклассическая теория, используемая в настоящей монографии, правильно и гораздо проще описывает нелинейные оптические эффекты исключением являются случаи, соответствующие настолько низким уровням интенсивности, что становятся существенными квантовые шумы. В этих случаях в полуклассической теории необходимо дополнительно учесть процессы спонтанного излучения, описанные выше в этом параграфе. При этом к когерентным полям добавляются поля со случайными фазами и с амплитудами, характерными для спонтанного излучения. Эти поля и являются шумовыми источниками , которые добавляются к классическим полям. Установление классического поля в лазере начинается с уровня этого шума. Фаза поля в лазерном типе колебаний априори неизвестна. По мере того как волна, распространяясь по образцу, нарастает и многократно возвращается обратно за счет отражения от зеркал, устанавливается определенная (но заранее неизвестная) фаза. По той же причине априори неизвестна и фага поля со стоксовой частотой в лазере, использующем вынужденное комбинационное рассеяние.  [c.103]

Мы не будем здесь, однако, подробно рассматривать акустические нелинейные эффекты, а проследим лишь аналогию их с нелинейными электромагнитными взаимодействиями. Для этой цели достаточно рассмотреть случай чисто продольных акустических волн пусть они распространяются в направлении оси 2. В области гипер-звуковых частот акустические и оптические длины волн оказываются сравнимыми. Частотная дисперсия для акустических волн весьма мала, так что нетрудно осуществить точное согласование фазовых скоростей на расстояниях порядка 1 см. Кроме того, затухание акустических волн может быть весьма малым в чистых кристаллах при температуре жидкого гелия акустическая волна затухает в е раз на расстояниях порядка Ю см и более. Не представляет труда возбудить акустические волны с интенсивностями, при которых начинают проявляться нелинейные свойства среды. В теории нелинейных взаимодействий акустических волн роль использованных нами ранее соотношений для векторов Р и Е должны иг-10  [c.147]


В этой главе изложены основные принципиальные положения из всего теперь уже огромного количества нелинейных явлений, эффектов, приложений, которые исследованы и продолжают исследоваться. Теоретические основы нелинейной акустики — это часть общей теории нелинейных волн — быстро развивающейся области современной физики, изучающей общие вопросы распространения волн конечной амплитуды на поверхности жидкости, волн в плазме, мощного лазерного излучения в оптически нелинейных средах и т. д. В настоящее время имеется уже обширная литература, относящаяся к различным разделам теории нелинейных волн, в том числе и к нелинейной акустике [1 —И по ходу изложения даются необходимые ссылки на оригинальные статьи, обзоры и монографии.  [c.65]

В этой главе рассматриваются задачи распространения волн в структурах, свойства которых изменяются в пространстве по периодическому закону. Примерами таких структур могут служить кристаллические твердые тела. Как известно, существует дальний порядок в расположении узлов решетки это приводит к пространственно-неоднородному распределению массы и потенциала электрического поля в кристаллах. Важную роль в технических приложениях играют искусственно созданные периодические структуры типа многослойных световых или акустических фильтров. В радиотехнике находят применение длинные цепочки из емкостей, индуктивностей и сопротивлений, расположенных в определенном порядке, а также замедляющие системы. В теории нелинейных волн обсуждаются задачи распространения волн в периодических структурах, неоднородность которых наведена полем другой волны. Эти задачи актуальны, например, в связи с проблемой создания оптических резонаторов для коротковолновых лазеров.  [c.141]

Нелинейная поляризация при сложении частот пропорциональна амплитуде каждой из волн в первой степени (см. (1.24)). Поэтому и амплитуда рожденного в преобразователе излучения суммарной частоты зависит от амплитуды ИК-сигнала линейно. Иными словами, при заданном распределении электромагнитного поля Еакачки по отношению к ИК-излучению остается справедливым принцип суперпозиции. Сказанное означает, что, как н в линейной оптике, для построения теории нелинейно-оптических преобразователей изображения достаточно найти отклик на излучение точечного ИК-источиика.  [c.45]

Рассмотренный лучевой подход нестрогий. Отождествление лучей с плоскими волнами в нелинейной оптике гораздо более проблематично, чем в теории обычных оптических приборов (приближение геометрической оптики). Например, один из основных вопросов связан с тем, что для нелинейных проздессов существенна толщина (объем) среды. Поэтому эффективность взаимодействия пересекающихся лучей явным образом зависит от их толщипы . Приведенный пример показывает, что полученные на основе интуитивного лучевого подхода результаты не являются априорно достоверными, даже в качестве оценочных. Эти результаты должны восприниматься как предварительные, помогающие скорее строгой постановке задачи, чем ее решению. Весьма заманчиво строить теорию нелинейно-оптических преобразователей в терминах обычных оптических систем понятия геометрической оптики — законы идеального кзображе-ния, геометрические аберрации, дифракционные эффекты, светосила и т. д. Не видно, однако, возможности обобщить эти понятия на нелинейную оптику с помощью интуитивных сообра-  [c.53]

Учебное руководство в равной мере рассчитано на студентов физических факультетов и вузов (как теоретиков, так и экспериментаторов) и слушателей спецотделений по переподготовке кадров в области лазерной физики, техники и технологии. Студенты и слушатели-теоретики, прочитав книгу, яснее представят себе задачи экспериментальной лазерной физики, нелинейной оптики и лазерной спектроскопии, овладев при этом формальным аппаратом, необходимым для их анализа. Студенты и слушатели, специализирующиеся в экспериментальных лабораториях, не только познакомятся с конкретными методшсами лазерной физики и полз йт разнообразный справочный материал по нелинейной оптике и спектроскопии, но и овладеют основами теории лазерной генерации, уравнениями нелинейной электродинамики и методами их анализа, освоят основные понятия теории нелинейных оптических восприимчивостей и получат представление о диагностических возможностях нелшейно-оптических устройств. Полагаем, что настоящая книга может оказаться полезной и для тех, кто изучает указанные проблемы самостоятельно.  [c.8]

Нелинейные оптические процессы могут наблюдаться и при относительно малой интенсивности света, облучающего исследуемую среду. Так, например, открытое еще в долазерный век С. И. Вавиловым и В. Л. Левшиным (1926) уменьшение поглощения уранового стекла при увеличении яркости свечения конденсированной искры положило начало большому циклу работ по просветлению различных материалов, которые имеют большое практическое значение (создание безынерционных световых затворов и др.). Они легко интерпретируются (см. 8. 5) в квантовых представлениях, связанных обеднением ответственного за поглощение нижнего уровня за счет перехода атома на более высокий долгоживущий уровень. Однако значение таких нелинейных процессов полностью проявилось лишь после изобретения лазеров, а дальнейшее развитие нелинейной оптики неотделимо от развития квантовой теории.  [c.171]

После изложенных соображений, касающихся существа предмета (квантовой оптики), обратимся к данному учебному пособию. Оно состоит из четырех частей 1. Развитие фотонных представлений. 2. Физика микрообъектов. 3. Квантовооптические явления. 4. Теоретические основы квантовой оптики. В первой части на основе ставших классическими работ Планка, Бора, Эйнштейна рассматриваются рождение и становление квантовой теории света, излагаются свойства фотона и фотонных ансамблей, демонстрируется переход от волновых представлений к квантовым. Во второй части анализируются некоторые принципиальные вопросы квантовой физики это позволяет объяснить интерференционные эффекты на корпускулярном языке. В третьей части приводятся необходимые сведения из физики твердого тела и затем обстоятельно рассматриваются три группы оптических явлений фотоэлектрические, люминесцентные, нелинейно-оптические эти явления иногда объединяют термином квантово-оптические . Вопросы, излагаемые в указанных трех частях пособия, составляют содержание раздела Квантовая природа света ,  [c.5]


Ниже мы изложим теорию черепковской генерации ИК излучения, базируясь на последовательной нелинейно-оптической трактовке явления, впервые данной в [31]. Надо сказать, что в самое последнее время наблюдается возрождение интереса к этой задаче. Очевидно, что для получения ИК излучения вместо оптического дублета можно посДать на среду один достаточно короткий световой импульс. Тогда биения различных его спектральных компонент — оптическое выпрямление светового импульса в среде с квадратичной нелинейной поляризацией — приводят к генерации короткого импульса ИК излучения.  [c.131]

В монографии описан новый класс приборов — нелинейно-оптических (параметрических) преобразователей (ап-конверторов) инфракрасного излучения в видимый, диапазон. Построены приближение геометрической оптики и дифракционная теория, проанализирована эффективность (светосила) преобразователей, шумовые характеристики и пороговая чувствительность нелинейно-оптических систем регистрации инфракрасного излучения. Теоретические параметры преобразователей сравниваются с экспериментальными даппыми.  [c.2]

Настоящая книга является первой попыткой систематического изложения физических основ работы нового класса приборов нелинейной оптики — преобразователей инфракрасного излучения — в видимом диапазоне. Для удобства читателей, не имеющих специальной подготовки в области нелинейной оптики, монография включает главу (первую) с изложением основных понятий этого раздела физики, необходимых для восприятия предмета. Во второй главе даны общие принципы расчета нелинейно-оптических преобразователей и показано, что с точки зрения формирования изображений каждый преобразователь эквивалентен некоторой линейной оптической системе с эффективными параметрами, зависящими от конфигурации и фазового фронта накачки, ее амплитуды, типа использованного синхронизма. В третьей и четвертой рассмотрены две основные схемы нелинейно-оптических преобразователей — схемы критического векторного и касательного (некритичного) синхронизма. Обсуждаются достоинства и недостатки каждой из них и возможные варианты оптимизации параметров. В последней главе анализируются разные практические аспекты работы преобразователей (спектральные и шумовые характеристики), приведены экспериментальные данные, иллюстрирующие степень соответствия параметров реальных преобразователей основным теоретическим представлениям. Приложения 1 и 3 несут самостоятельную информацию, поскольку в первом приведен новый метод в классической теории аберраций на основе интегрального принципа Гюйгенса — Френеля, а в третьем — расчетные данные по углам разных типов синхронизма. Часть информации дана в компактной форме — показаны эквипотенциальные поверхности угол синхронизма как функция длин волн накачки и инфракрасного излучения. Материал третьего приложения основан на расчетах Г. М. Барыкинского.  [c.3]

Интегральные принципы описания распространения электромагнитных волн широко применяются в теории оптических приборов [7, 8]. В линейной оптике основой такого описания является принцип Гюйгенса — Френеля, позволяющий с единой точки зрения построить геометрическую (см. Прилояуение 1) и дифракционную [7, 8] теории прибора. Имеющиеся в литературе расчеты нелинейно-оптических преобразователей основаны, как правило, на непосредственном решении укороченных волновых уравнений [1—6] с использованием различных упрощающих предположений [159—160]. Подход функций Грина, аналогичный подходу Гюйгенса — Френеля, может эффективно применяться в теории параметрического преобразования изображения из ИК-области в видимую [175—177, 219, 223, 224].  [c.54]

Расчет конкретных схем преобразования изображения основан на приближенном вычислении интеграла Грина (2.27), что позволяет выделить часть нелинейного кристалла, дающую основной вклад в излучение на суммарной частоте, и пренебречь влиянием остальной части. Излучатели, интерферирующие точно в фазе, определяют лучи, соответствующие геометрической оптике. Оставшиеся излучатели описывают эффекты, аналогичные дифракционным. Таким образом, удается построить отдельно геометрическую онтику нелинейно-оптических преобразователей (гл. 2, 4), а затем дать дифракционную теорию разрешающей способности (гл. 3, 4).  [c.57]

Гайиер A. B. Вопросы теории взаимодействия неплоских волн в нелинейных оптических средах Дис.. .. канд. физ.-мат. наук 01.04.04.— Новосибирск, 1975.  [c.164]

В настоящей книге приведены сегнетоэлектрические, электро оптические и нелинейно оптические свойства широкого класса кристаллов щелочноземельных ниобатов и тангалатов, которые применяются или найдут применение дчя управления лазерным излуче нием В книге также освещены физико-химические аспекты тех нологии выращивания монокристаллов этих соединений. Показана зависимость сегНвтоэлектрических и оптических свойств этих ма териалов от состава и нарушения стехиометрии, которое происходит в процессе выращивания монокристаллов или термоэлектрической обработки. Рассмотрены вопросы теории нелинейно-оптиче-ских свойств кислородно октаэдрических сегнеюэлектриков.  [c.2]

В большинстве применений сегнетоэлектрических материалов важно иметь точное знание зависимости сжойств материала от температуры и их изменения от материала к материалу при данной температуре. Феноменологическая теория сегнетоэлектричества Девоншира — Гинзбурга предсказывает температурную зависимость сегнетоэлектрических свойств некоторых материалов, но она неприменима к проблемам предсказания зависимости свойств от состава материала. Если материаловедческий критерий определен, его можно использовать в выборе лучшего материала для конкретного применения, а тaкн e в поиске материалов с высокими нелинейно-оптическими характеристиками.  [c.292]

В последних двух главах рассматривается концентрация поля в некоторых ограниченных областях пространства, в которых имеют место определенные комбинации длин волн и неоднородностей среды это приводит к эффекту, который можно назвать своего рода удержанием излучения. В частности, в гл. 7 мы рассмотрим пассивные и активные резонаторы, используемые в лазерных устройствах и предназначенные для удержания излучения вблизи оси оптических резонаторов и интерферометров Фабри — Перо. При этом мы будем проводить изучение главным образом на основе теории дифракции. В гл. 8 для исследования удержания излучения в поперечном направлении вблизи оси диэлектрического световода задача решается аналитически с использованием модовых решений волнового уравнения. Это позволяет рассмотреть единым образом самые современные вопросы, связанные с такими нелинейными оптическими явлениями, как фазовая самомодуляция и солитоны.  [c.9]

Гамильтон (Hamilton) Уильям Роуан (1805-1865) — ирландский математик и физнк. Окончил Тринити Колледж (1827 г.), профессор Дублинского университета и директор астрономической обсерватории. Исследования в области оптики и механики. Разработал математический аппарат для решения задач геометрической оптики развил аналогию между корпускулярной и волновой оптикой, использованную через сто лет Э. Шре-дингером при разработке волновой механики. Распространил теорию оптических явлений на механику (1834-1835 гг.), разработав общие принципы, в частности вариационный принцип получил канонические уравнения механики. Построил своеобразную систему чисел кватернионов. Идеи Гамильтона в настоящее время получают развитие в теории нелинейных волн, теории динамических систем и др.  [c.359]


Квантовая электроника достигла больших успехов в создании лазерных источников света с высокой напряженностью поля, хорошими когерентными свойствами, перестраиваемой частотой и регулируемым распределением излучения во времени. Созданы также регистрирующие устройства высокого временного и спектрального разрешения. С помощью этой новой совершенной аппаратуры в последние годы удалось провести многочисленные и качественно новые эксперименты по взаимодействию межДу электромагнитными полями н атомными системами. Одновременно продолжалось теоретическое изучение таких взаимодействий и была создана теория процессов, происходящих в сильных когерентных полях, причем в зависимости от характера конкретных процессов на передний план в большей или меньшей степени выдвигались квантовые свойства атомных систем нли поля излучения. В некоторых случаях учитывались сразу квантовые свойства как атомных систем, так и поля излучения. Эти экспериментальные и теоретические исследования в нелинейной оптике позволили получить принципиально новую информацию о процессах взаимодействия между светом и атомными системами в различных состояниях, а также о физических и химических свойствах веществ и о параметрах процессов, влияющих на ход нелинейных оптических явлений. Открылись новые горизонты в спектроскопии, фотофизике, фотохимии и квантовой электронике, а также в области их технических применений.  [c.8]

Влияние геометрии распространения волн монохроматического света в нелинейных оптических средах может быть интерпретировано в квантовой теории элементарного акта взаимодействия как многофотонный процесс. Так, например, в результате четырехфотонного рассеяния из двух падающих фотонов с одинаковыми частотами и различными волновыми векторами, 2-могут возникнуть два разбегающихся фотона с теми же самыми частотами и с двумя изменившимися волновыми векторами кз., 4.. Этому процессу следует сопоставить оператор взаимодействия (ср. разд. 2.22)  [c.482]

Богатая цветовая гамма растительного и животного мира волшебные краски неба, радуги, восхода и захода солнца, эффекты тени, смены дня и ночи, притягательная сила огня и раскаленного металла, кшогоцветие орнаментов национальных одежд, посуды, витражей... Можно долго перечислять примеры нашего повседневного соприкосновения с миром оптических явлений, которое начинается с раннего детства. Это и неудивительно, так как зрение человека основано на закономерностях взаимодействия света с веществом. Оптические свойства твердых тел являются предметом пристального научного и технологического интереса на протяжении последних трех-четьфех столетий, хотя эти свойства широко использовались для решения определенных декоративных задач еще со времен ранних цивилизаций уже древние художники, создатели наскальных изображений, находили эффектные цветовые решения путем смешивания различных природных пигментов. Начиная с открытия Снеллиусом в 1621 г. закона преломления света оптическая спектроскопия прошла полный драматизма и внутренних противоречий путь развития. За исследованиями явлений отражения и преломления света последовал этап повышенного внимания к интерференции, дифракции и поляризации света, а затем пришло время для целенаправленного изучения поглощения, флюоресценции (люминесценции), рассеяния света и нелинейных оптических эффектов. Длительное соперничество между корпускулярной и волновой теориями света увенчалось компромиссом, основанным на кохщепции дуализма, и открытием законов квантовой механики и квантовой электродинамики. Создание лазерных источников и совершенствование методов детектирования электромагнитного излучения превратили спектроскопию в мощный метод исследования физических свойств твердого тела и протекающих в нем элементарных процессов. Более того, вряд ли можно представить сегодня наши познания о микромире без средств, которые обеспечиваются спектроскопией видимого, инфракрасного.  [c.3]

Взаимный прогноз оптических характеристик светорассеяния локальных освещенных объемов атмосферы, соответствующих раз-.личным спектральным интервалам, является одним из главных достоинств изложенной в монографии теории оптического зондирования рассеивающей компоненты атмосферы. Алгоритмы, которые численно решают эту задачу, реализуются с помощью регуляризирующих операторов восстановления и прогноза (экстраполяции). Операторный подход придает указанной теории вполне законченный вид. Остается лишь заметить, что аналогичный подход должен быть развит и в теории поглощения оптического излучения в атмосфере. Только в этом случае теория оптического зондирования поглощающей компоненты будет служить эффективной основой дистанционного контроля метеорологических полей в атмосфере. Речь идет, прежде всего, о теории оптического мониторинга атмосферы средствами активного (СОг-лидары) и пассивного зондирования в ИК-Диапазоне. В заключительном разделе главы изложены подходы к анализу и численному решению нелинейных обратных задач светорассеяния. Эти задачи, как правило, - касаются более тонких аспектов взаимодействия оптического  [c.11]

В этой главе мы рассмотрим нелинейные оптические явления, возникающие при распространении мощного лазерного излучения в среде и связанные с нелинейностью отклика среды на внешнее воздействие. Это приводит, в частности, к появлению волны нелинейной поляризации, которая ответственна за генерацию оптического излучения на новых частотах (генерацию гармоник, суммарных и разностных частот, четырехволновое смешение и т.д.), а в случае, когда на комбинационных частотах в среде имеются элементарные возбуждения (оптические и акустические фононы, плазмоны и т.д.), за процессы вынужденного рассеяния. Все эти нелинейные оптические явления описываются нелинейными оптическими восприимчивостями. В этой главе мы рассмотрим их феноменологическую теорию, свойства симметрии и дадим классификацию нелинейно-оптических явлений.  [c.184]

Более детальный анализ показывает, что это предположение обосновано для анизотропной среды ( ор(Маль-пые волны которой имеют -определенные направления поляризаций), но для изотропной среды выполняется лишь в частных случаях, поскольку здесь поляризации нормальных волн произвольны, В общем же случае нелинейного взаимодействия в оптически изотропной среде (например, генер-ации второй гармоники в кристалле типа ОаАз, вынужденном -комбинацианно-м рассея-нии или вынужденном рассеянии Мандельштама — Бриллюэна в жидкостях) уравнения первого порядка являются векторными и описывают одновременно изменение амплитуд и поляризаций -взаимодействующих волн. Более детально этот вопрос рассмотрен в работе [41]. Заметим, кстати, что в теории нелинейных -волновых явлений в диспергирующих средах плодотворным оказывается использование идей, а в ряде случаев и конкретных методов нелинейной теории колебаний (например,. при анализе системы уравнений для связанных волн полезным оказывается метод фазовой плоскости и т. п.). Эта сторона нелинейной оптики подробно обсуждается в работе [41] там же можно найти и -соответствующую библиографию.  [c.20]

Эти когерентные состояния, введенные еще Шрединге-зом, недавно были подробно исследованы Глаубером 28] и многими другими авторами. Мы не будем здесь обсуждать связь восприимчивостей с этими состояниями. Согласно принципу соответствия, в предельном случае больших п получаемые с помощью (2.96) результаты должны совпадать с результатами полуклассической теории. Следует иметь в виду, что почти все нелинейные оптические явления наблюдаются при больших п. Типичный импульс лазера с модулируемой добротностью содержит около 10 световых квантов, распределенных примерно по 10 —10 типам колебаний. Инфорхмация о фазе может быть утрачена при прохождении луча лазера через среду с потерями. По мере затухания волны волновой пакет с минимальной неопределенностью, описываемый соотношением (2.96), будет переходить в другие когерентные состояния с меньшими значениями п. После того, как луч ослабится до значений п, меньших 10 или 5, значение фазы перестает быть точно определенным.  [c.102]

Нелинейный фазовый набег может зависеть не только от координат, но и от времени. В коротком световом импульсе интенсивность быстро меняется и, следовательно, частота и фаза оказываются промодулированными во времени. Таким образом, мощный световой импульс в нелинейной среде может испытывать самомодушцию (как сжатие, так и расширение). При компепсации нелинейного сжатия и дисперсионного расплывания могут образовываться своеобразные стационарные импульсы — устойчивые оптические солитоны. Еще из общей теории нелинейных колебаний были известны уединенные волны, распространяющиеся на большие расстояния с малыми искажениями, например йолны в у.- ких каналах или гигантские океанские цунами, возникающие после землетрясений. На рис. 18.15 показано, как при достижении некоторой критической плотности энергии формируется солитон, форма которого описывается пптерболическим секансом  [c.290]



Смотреть страницы где упоминается термин Теория нелинейных оптических сре : [c.18]    [c.6]    [c.78]    [c.256]    [c.26]    [c.16]    [c.32]    [c.385]    [c.282]   
Прикладная нелинейная оптика (1976) -- [ c.98 ]



ПОИСК



Дифракционная теория взаимодействия неплоских волн в нелинейных оптических средах. Точно решаемые модели

КРИСТОФЕЛЬ, П. И. КОНСИН. Динамическая теория фазовых переходов в кристаллах типа сегнетовой соли и тиомоО нелинейных оптических материалах с изменяемой дисперсией

Нелинейная теория

Приближенный метод в дифракционной теории нелинейно-оптических преобразователей. Расчет преобразователя в схеме касательного синхронизма при произвольном расположении источников

Теория электрооптического и нелинейно оптического эффектов



© 2025 Mash-xxl.info Реклама на сайте