Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Лазерная спектроскопия

Заслуживает внимания тот факт, что использование лазеров в спектроскопии определяется относительной простотой регистрации сигнала, несущего информацию об исследуемом явлении. Высокая спектральная плотность привела к появлению лазерной спектроскопии, основанной на комбинационном рассеянии, и методов инфракрасной флуоресценции с высоким временным разрешением, а также измерений, основанных на поглощении излучения. Высокая степень когерентности и узость полосы излучаемых частот позволяют использовать лазер для гетеродинной спектроскопии и спектроскопии, основанной на рассеянии света.  [c.218]


Лазерная спектроскопия на основе двойного резонанса и флуоресценции обеспечивает очень высокое разрешение по энергии, например в процессах обмена колебательной энергией между селективно возбужденными и не-  [c.221]

В работах [115, 121] приведены описания оптико-акустического метода лазерной спектроскопии, основанного на измерении изменения давления газовой смеси, находящейся в замкнутом объеме камеры спектроскопа. С помощью этого метода можно получать наиболее точную информацию о малых концентрациях таких стабильных изотопов, как , B, В N, N, входящих в состав сложных молекул. Метод позволяет осуществлять не только измерение абсолютных концентраций, но и контроль за их малыми вариациями, которые удается регистрировать на основе компенсационного метода измерения с использованием лазерного излучения на двух частотах, совпадающих с полосами поглощения соответствующих изотопов. Измерение относительного содержания изотопов в газовой смеси заключается в сравнении оптико-акустических сигналов двух каналов, в одном из которых находится исследуемая смесь изотопов, а в другом — эталонная. Подобный метод позволяет измерять относительные вариации изотопных отношений до 10 %. Предельная чувствительность метода определяется степенью стабилизации лазера  [c.222]

ВНУТРИРЕЗОНАТОРНАЯ ЛАЗЕРНАЯ СПЕКТРОСКОПИЯ — метод лазерной спектроскопии, в к-ром исследуемое вещество помещается внутрь резонатора ла-  [c.293]

Новые принципы лазерной спектроскопии  [c.554]

Когерентная спектроскопия комбинационного рассеяния (стационарная н нестационарная см. Активная лазерная спектроскопия) позволяет измерять времена релаксации, изучать процессы внутри- и межатомного переноса энергии возбуждения для трёх- и более уров-невых систем (рис. 5).  [c.308]

С. с. изучается методами магн, резонанса, др. методами радиоспектроскопии. Для возбуждённых состояний используют методы двойного резонанса (оптический — радиочастотный, инфракрасный — радиочастотный резонансы), а также методы нелинейной лазерной спектроскопии.  [c.459]

За рамками приведённой классификации остаются лишь методы т. н. активной спектрометрии, основанной на генерации излучений перестраиваемыми по к лазерами (см. Активная лазерная спектроскопия).  [c.612]

Проведенное рассмотрение также сможет в какой-то степени подготовить читателя к пониманию открывшихся за последнее время возможностей реализации исключительно точных оптических измерений, которые проводмгся < Под крышей допле-ровской линии . Изложение таких современных методов оптической спектроскопии (интерференция агомнь х состояний, некоторые способы лазерной спектроскопии) в рамках этой книги, к сожалению, невозможно.  [c.398]


Сочетание таких характеристик лазеров, как узость линии излучения, способность настраиваться на определенную волну в некотором спектральном интервале (например, у органических лазеров) позволило получить разрешающую способность лазерных спектроскопов значительно выше, чем обычных [194]. В этом случае работа спектроскопа основана на прямом поглощении лазерного излучения исследуемым веществом, причем предельно допустимое разрешение определяется неоднородностью допле-ровского контура излучения.  [c.219]

Применение ИК-излучения. И. и. находит широкое применение в науч. исследованиях, при решении большого числа практич. задач, в военном деле и пр. Исследование спектров испускания и поглощения вешеств в ИК-области является дополпепием к исследованиям в видимой и УФ-областях н используется при изучении структуры электронной оболочки атомов, определения структуры молекул, а также для качеств, и количеств. спектрального анализа. Широкое применение для изучения структуры атомов и молекул и элементного состава вещества нашли ИК-лазеры (особенно с нерестрап-ваемой частотой см. Лазерная спектроскопия].  [c.183]

Важными областями применения К. у., иомимо указанных BHHie, являются лазерная технология, медицина, оптическая обработка информации, оптическая локация, лазерная спектроскопия, лазерная диагностика плазмы и др.  [c.320]

Твердотельные лазеры на люминесцирующих средах Л. на стёклах, активированных Nd, УЛО-лазерьг, рубиновые лазеры) накачка оптическая. Применение лазерная спектроскопия, нелинейная оптика, лазерная технология (сварка, закалка, упрочнение поверхности). Лазерные стёкла применяются в мощ1тых установках для лазерного термоядерного синтеза (ЛТС).  [c.551]

Высокая направленность и интенсивность лазерного излучения позволяет измерять малое поглощение ( — 10 см 1). Широко применяются абсорбционные спектрометры на основе диодных лазеров (разрешение 10 M i), а также фурье-спектрометры (см. Фуръе спектроскопия). Для повыше]ШЯ контрастности резонансов и исследований нелинейных явлении поглощающую среду помещают внутрь резонатора лазера (см. Внутрире-зоиаторная лазерная спектроскопия).  [c.555]

Л К применяют для спектроскопич. исследований, что позволяет повысить чувствительность, спектральное и временное разрешение на много порядков по сравнению с традиционными методами спектроскопии (см. Лазерная спектроскопия).  [c.564]

Вращат. структуру колебат. полос обычно исследуют методами Фурье спектроскопии, лазерной спектроскопии, двойного ИК — МВ-резонанса и др. эти методы обеспечивают спектральное разрешение 10 см и лучше и позволяют полностью (для лёгких молекул) или частично разрешить структуру полос. Каждая полоса наблюдается в виде сотен и даже тысяч вращат. линий. Существуют эфф. теоретич. методы для моделирования такого большого массива линий. Из частот переходов определяются величины молекулярных параметров, к-рые затем используются при построении потенц. поверхности и при расчёте частот линий в др. участках спектра.  [c.204]

НЕЛИНЕЙНАЯ СПЕКТРОСКОПИЯ — совокупность методов оптич. спектроскопии, базирующихся на применении эффектов нелинейной оптики. Методами Н. с. исследуют нелинейные оптич. восприимчивости — их частотную дисперсию, симметричные свойства, изменения во времени и т. и., а также изменения линейных оптич. характеристик вещества (показателя преломления, коэф. поглощения, анизотропии и оптич. активности), вызванные нелинейным взаимодействием мощного оптич. (лазерного) излучения с исследуемым веществом, Н. с. относится к лазерной спектроскопии, т. к. для реализации всех методов Н. с. используется лазерное излучение одной или неск. длин волн. Одной из разновидностей Н. с. является активная лазерная спектроскопия. Первые работы по Н. с. появились в 1964—66, широкое развитие она получила после созда-Бия плавно перестраиваемых по частоте лазеров, а также лазеров со стабилизиров. узкими линиями генерации, лазеров, испускающих сверхкороткие световые импульсы с длительностью в пико- и фемтосекундном диапазонах, и др.  [c.306]

Спектроскопия трёх- и четырёхволнового смешения — один из наиб, распространённых методов Н. с.— представляет собой варианты когерентной активной лазерной спектроскопии поглощения и (или) рассеяния света, В этих методах регистрируется частотная зависимость интенсивности (поляризации, фазы) световой волны, генерируемой в исследуемой среде за счёт трёх- или четырёхволнового смешения (с участием нелинейной восприимчивости 2-го и 3-го порядков соответственно), т. е. за счёт нелинейных оптич. процессов, при к-рых  [c.308]


Эффект О. н. является основой ряда методов когерентной лазерной спектроскопии. Его применение в первую очередь связано с возможностью прямых измерений матричных элементов квантовых дереходов.  [c.437]

Представление о площади импульсов играет важную роль в теории резонансного взаимодействия эл.-магн. излучения с веществом, в радиоспектроскопии, лазерной спектроскопии, нелинейной оптике резонансных сред. (См. также Затухание свободной поляризации, Оптическая нутация, Самоиндуцированная прозрачность, Спиновое эхо, Фотонное эхо.) Имеются также обобщения этого понятия на случай многофотонных процессов.  [c.583]

При рассеянии интенсивного излучения в среде спонтанные процессы Р. с. могут усилиться стимуляцией излучением (индуцированное излучение). С тэким вынужденным рассеянием света связан широкий круг явлений напр., на вынужденном Р. с. основана работа комбинационного лазера. Если Р. с. стимулируется фотонами, рождёнными в среде в процессе рассеяния, то говорят о вынужденном пассивном рассеянии. Если Р. с. стимулировано внеш. излучением, то его нвз. активным вьшужденным Р, с. (см. Активная лазерная спектроскопия комбиващюнного рассеяния. Нелинейная оптика).  [c.282]

Систематич. изучение Р. с. стало возможным с нач. 1970-х гг. благодаря успехам лазерной спектроскопии, позволившей исследовать в лаб. условиях Р. с. с л 300, а также радиоастрономии, Т. к. в межзвёздных облаках были обнаружены линии ИОглощения между Р, с. с п 700.  [c.392]

С. п. Представляет большой интерес для нелинейной оптики резонансных сред, физики солитовов, лазерной спектроскопии (в частности, для определения величин матричных элементов квантовых переходов).  [c.410]

Экспериментально С. в. исследуется методами лазерной спектроскопии, радиоспектроскопии, электронного парамагнитного резонанса, ядерного магнитного резонанса, ядерного квадруполъного резонанса, используются также методы гамма-спектроскопии, основанные на Мёссбауэра эффекте. Изучение сверхтонкого расщеплз-ния позволяет определить спины, маги, и квадруполь-ные моменты ядер, в т. ч. и в случаях, когда время жизни этих ядер мало. В свою очередь, благодаря С. в. ядра играют роль естеств. зонда, позволяющего исследовать электронную структуру твердых тел.  [c.460]

При таком рассмотрении измерение спектра сводится к нахождению амплитуд и фаз комплексной ф-ции S(v), описывающей спектр сигнала m(i). Реальные возможности измерений связаны с рядом ограничений и альтернатив. Во-первых, приёмники излучения реагируют не на интенсивность излучения, а на поток, пропорциональный произведению 5(v)-S (v)= S(v)j. Во-вторых, в обычной (не лазерной) С. излучение чаще всего некогерентно, т. к. испускается большим числом элементарных излучателей со случайными амплитудами и фазами (об особенностях С. когерентного излучения см. в ст. Лазер, Лазерная спектроскопия). Поэтому и(() — случайная ф-ция и, следовательно, 5(v) — случайная величина. Для детермиииров. описания случайного процесса излучения рассматривают спектр его мощности  [c.621]

С. разделяют также по методам возбуждения и наблюдения спектров. Широкое применение получили акустооптпческая С., когерентная С., G. насыщения, С, гетеродинирования, модуляционная С., много тонная С., фемто-и пикосекундная С., С. фононного эха, квантовых биений и др. методы лазерной спектроскопии. Существ. развитие получила фурье-С. с использованием фурье-спектрометров высокого разрешения.  [c.625]

С. к. позволяет получать информацию о системе уровней энергии кристалла, о механизмах взаимодействия света с веществом, о переносе и преобразовании энергии возбуждения в кристалле, фотохим, реакциях и фотопроводи-мости. С помощью С. к. можно также получить данные о структуре кристаллич. решётки, о характере дефектов, в частности примесных центров люминесценции в кристаллах. С. к. исследует влияние поверхности кристалла на его спектр, много-фотонные процессы при лазерном возбуждении и нелинейные эффекты в кристаллах (см. Лазерная спектроскопия, Нелинейная спектроскопия). В С. к. широко используется теория групп, к-рая даёт возможность учесть свойства симметрии кристаллов, т. е. установить симметрию волновых ф-ций и найти отбора правила для квантовых переходов в кристалле.  [c.625]

Применения Т. л. чрезвычайно разнообразны. Это — ла- ерная технология (сварка, резка и др.), технология электронных приборов, медицина, лазерная локация, системы контроля состава атмосферы, оптич. обработка информации, иитегра-ньная и волоконная оптика, лазерная спектроскопия, лазерная диагностика плазмы и управляемый термоядерньв синтез, лазерная химия и лазерное разделение изотопов, нелинейная оптика, сверхскоростная фотография, лазерные гироскопы, сейсмографы и другие точные физ, приборы.  [c.50]

Неоднородно уширены линии примесных ионов в неоднородных кристаллах и аморфных твёрдых телах. Значительное однородное уширение (5са- 10 —10 с ) испытывают молекулярные линии в жидкостях и растворах. Вследствие перекрытия колебательно-вращат. полос Б большинстве случаев вместо отд. спектральных линий в спектрах поглощения и люминесценции наблюдаются широкие полосы. Во мн. экспериментах лазерной спектроскопии и радиоспектроскопии (особенно в пучковых) время взаимодействия атомов или молекул с полем излучения мало по сравнению с временем жизни возбуждённого уровня. В результате наблюдас.мый контур линии поглощения (или вынужденного испускания) испытывает т. н. время-пролётнос (или просто пролётное) уширение. При этом ширина контура (с/—размер области вза-  [c.263]


Смотреть страницы где упоминается термин Лазерная спектроскопия : [c.411]    [c.327]    [c.189]    [c.294]    [c.294]    [c.363]    [c.570]    [c.587]    [c.328]    [c.391]    [c.455]    [c.553]    [c.554]    [c.555]    [c.299]    [c.299]    [c.309]    [c.394]    [c.606]    [c.305]   
Смотреть главы в:

Физика лазеров  -> Лазерная спектроскопия


Атмосферная оптика Т.2 (1986) -- [ c.193 ]

Атмосферная оптика Т.3 (1987) -- [ c.111 , c.119 , c.133 , c.146 ]



ПОИСК



11нбл юдател ыыя разрешлющая лазерная спектроскопия

Внутрирезонаторная лазерная спектроскопия

Диагностика вещества методами нелинейной лазерной спектроскоНелинейный оптический отклик в лазерной диагностике вещества принципы диагностических методов нелинейной спектроскопии

Лазерная оптико-акустическая спектроскопия

Лазерная спектроскопия абсорбционная

Лазерная спектроскопия внутрирезонаторный метод

Лазерная спектроскопия вптрнрезонаторная

Лазерная спектроскопия комбинационного рассеяния

Лазерная спектроскопия комбинационного рассеяния света

Лазерная спектроскопия опгнко-акустическая

Лазерная спектроскопия оптико-акустический метод

Лазерная спектроскопия спектрофотометрический мето

Лазерная спектроскопия флуоресценции

Лазерная спектроскопия флуоресценции и комбинационного рассеяния

Лазерное (-ая, -ый)

Принципы нелинейной лазерной спектроскопии

Сорэ решетка спектроскопия лазерная

Спектроскоп

Спектроскопия

Сравнение методов абсорбционной лазерной спектроскопии

Требования лазерной спектроскопии

ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ Лазерная спектроскопия ДНК. Развитие метода

Эффект насыщепия в лазерной спектроскопии



© 2025 Mash-xxl.info Реклама на сайте