Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Структуры пространственно-временные

Таинственная сила всемирного тяготения была интерпретирована как чисто геометрическое явление — следствие римановой структуры пространственно-временного континуума.  [c.43]

Кинематика — это раздел механики, в котором с геометрической точки зрения изучаются пространственно-временные свойства движения различных объектов. С целью практических при.тожений значительное внимание уделяется рациональным методам расчета скоростей и ускорений отдельных точек, как изолированных, так и входящих в состав абсолютно твердых тел. Владение такими методами полезно при разработке реальных механических систем, выявлении структуры их виртуальных перемещений, составлении уравнений динамики.  [c.76]


Пространственно-временная структура  [c.154]

Из всех событий реального мира теоретическая механика выделяет главным образом события, связанные с геометрическим аспектом процесса движения. Такие события состоят в том, что рассматриваемая геометрическая точка в заданный момент времени занимает конкретное положение в физическом пространстве. В этом смысле представление о мире можно предельно упростить, изображая его события точками в четырехмерном пространстве, полученном из трехмерного физического пространства добавлением измерения, отражающего ход времени. Время — особое измерение. Его отношение к геометрическим объектам зададим с помощью галилеевой пространственно-временной структуры, включающей следующие аксиомы  [c.154]

Пространство А , в котором введена указанная пространственно-временная структура, называется галилеевым пространством.  [c.154]

Фундаментальным свойством материи является наличие пространственной - временной структуры. Взаимосвязь структур различной природы подтверждает идеи В.И. Вернадского о едином процессе развития Вселенной, что нашло отражение в периодической системе элементов Менделеева.  [c.59]

Нерегулярный, хаотический характер пичков, наблюдающийся в реальных случаях, можно объяснить следующим образом. Каждая мода имеет определенную пространственную структуру и черпает энергию в основном в тех областях кристалла, где напряженность ее поля велика. Поэтому каждая мода обладает в какой-то степени своим запасом инверсной населенности. Опыт показывает, что в каждом пичке происходит возбуждение малого количества продольных мод и в большинстве случаев лишь одной поперечной моды. Перескок генерации с одних мод на другие приводит к неравномерности временных интервалов, разделяющих пички, и к хаотическим пульсациям их интенсивности. Значительную роль в нарушении регулярности пичков играют пространственно-временные флуктуации накачки и неоднородности кристалла, вследствие которых различные участки кристалла не дают одновременной генерации. Спектральная ширина излучения отдельного пичка составляет 0,01—0,05 см . Полная спектральная  [c.297]

Временные и пространственно-временные диссипативные структуры.  [c.34]

В ряде случаев нелинейные химические реакции, идущие в тонком слое, приводят к образованию пространственно-временной структуры, которая имеет вид кольцевых и спиральных волн. Возникновение таких структур в нелинейных химических реакциях связано с локальными флуктуациями концентраций и диффузией реагентов.  [c.35]

В римановом пространстве как раз таким образом, как представлял себе это Герц для механических систем, свободных от потенциальной энергии. Единственная разница заключается в том, что в системе Герца риманова кривизна пространства конфигураций создается кинематическими условиями, наложенными на скрытые движения системы, а в теории Эйнштейна риманова структура физического пространственно-временного континуума является внутренним свойством геометрии мира.  [c.159]


При исследовании систем, находящихся вдали от состояния равновесия, неожиданно обнаруживается зависимость между кинетикой идущих в системах химических реакций и их пространственно-временной структурой. Конечно, верно, что взаимодействия, определяющие величины констант скоростей химических реакций и параметров переноса, в свою очередь определяются величинами близкодействующих сил (имеются в виду валентные связи, водородные связи, силы Вап-дер-Ваальса). Тем не мепее решения кинетических уравнений зависят, кроме того, и от глобальных характеристик. Эта зависимость, тривиальная для термодинамической ветви вблизи равновесия, для химических систем, находящихся в условиях, далеких от равновесных, становится определяющей. Например, диссипативные структуры, как правило, возникают лишь в таких системах, размеры которых превышают некоторые критические значения. Значения этих критических величин являются сложной функцией параметров, определяющих идущие в системе химические реакции и диффузию. Поэтому мы можем сказать, что химические нестабильности сопряжены с упорядочением па больших расстояниях, благодаря которому система функционирует как единое целое.  [c.137]

Пространственно-временные структуры, образующиеся вследствие развития неустойчивости П. т, т., характеризуются непрерывным притоком в неё энергии от внеш. источника и непрерывной её диссипацией во внеш. среду. К диссипативным структурам приводят помимо токовых неустойчивостей неустойчивости под воздействием интенсивного эл.-магн. излучения, интенсивного потока тепла при большом градиенте Т и др. Общим во всех случаях является существование критич. значения параметра, характеризующего уровень возбуждения П. т. т. (ток, мощность излучения, ДГ и т, п.).  [c.604]

Др. результатом развития неустойчивости могут быть статич. диссипативные структуры в виде распределения параметров П. т. т. в пространстве (наир., периодического). Элементами пространств, структур обычно являются до.мены и доменные стенки. В пространственно-временных структурах происходят движение доменов и доменных стенок, их колебания около иек-рых положений равновесия, пульсация параметров плазмы в домене и размеров домена. Домены Ганна и шнуры — примеры диссипативных структур.  [c.604]

Однако в начале исследований использовалось, как правило, многочастотное излучение (много продольных мод при одной аксиальной моде) или даже многомодовое излучение (много продольных и поперечных мод), так как в таких режимах легче получать большую энергию излучения в импульсе. В случае многочастотного и многомодового режимов пространствен но-временное распределение излучения в импульсе существенно различается для различных точек пространства и различных моментов времени. Возникает тонкая структура пространственно-временного распределения с большим перепадом от максимумов к минимумам локальной интенсивности излучения, возникающих из-за интерференции различных мод. Зарегистрировать эти перепады, используя стандартную диагностическую аппаратуру, практически невозможно, а классические измерения огибающей не отражают истинного распределения интенсивности. Остается единственная возможность независимо определить истинное распределение вероятности реали-  [c.59]

Р1зменения формаций в латеральной плоскости в пределах горизонтальных рядов, в вертикальной плоскости мощностей геологических тел, их формы, условий залегания, химического состава подземных вод с глубиной (вертикальная гидрохимическая зональность) гидрогеологической структуры (пространственно-временных отношений водосодержащих и относительно водонепроницаемых геологических тел) химического состава вод в латеральной плоскости, в том числе химического состава и глубины залегания грунтовых вод (климатическая зональность)  [c.182]

В связи с этим, диссипативными структурами называют высокоупорядоченные самоорганизующиеся образования в системах, далеких от равновесия, обладающие определенной формой и характерными пространственно-временными размерами они устойчивы относительно малых возмущений и характеризую гея временем жизни и областью зшкализации. Этим они отличаются от равновесных структур. Кроме того, следует выделить следующие специфические свойства диссипативных структур  [c.60]

Рассмотрим примеры диссипативных структур, самоорганизующихся в системах различной природы. А.И. Гапонов-Грехов и М.И. Рабинович [33] по аналогии с классификацией колебаний (свободные, вынужденные и автоколебания) классифицировали пространственно-временные структуры на свободные, вынужденные и автоструктуры.  [c.62]


Возникновение диссипативных структур или высокоупорядоченных образований (рисунок 1.21), обладающих определенной формой и характерными пространственно-временными "размерами", связано со спонтанным нарушением симметрии и возникновением структур с более низкой степенью симметрии по сравнению с пространственно однородным состоянием. Это возможно только в условиях, когда система активно обменивается энергией и веществом с окружающей средой. Именно спонтанное нарушение симметрии приводит к образованию вихрей Тейлора, ячеек Бенара, эффекту полосатой или лятнисюй окраски животных, доменной структуре в твердых телах, спиргшевидиой структуре сколов кристаллов, периодическим химическим реакциям и т.н.  [c.63]

В [31] приводится описание гипотетической дедуктивной модели многоуровневой организации систем, построенной на основе изучения динамических симметрично-асимме фичных и пространственно-временных параметров. В итоге были выявлены универсальные инварианты в структурах различного происхождения (по тину "золотого сечения" в архитектуре) и установлены закономерности эволюции иерархических систем путе.м взаимных прегфащений симметрии-асимметрии. Автором широко использованы элементы комбинаторики и теории фафов.  [c.131]

Упорядоченные структуры, возникающие согласно критерию Гленсдорфа—Пригожина (3.4) при необратимых процессах в открытых системах вдали от равновесия в нелинейной области, когда параметры систем превыщают определенные критические значения, Пригожин назвал диссипативными структурами. Существуют пространственные, временные и пространственно-временные диссипативные структуры. Рассмотрим некоторые из них.  [c.32]

На основании экспериментального исследования фазовых переходов при трении твердых тел Л.И. Бершадским и др. [49] сделан вывод о том, что образующиеся при трении диссипативные структуры представляют собой пространственно-временное распределение трибоактивированных частиц и квазичастиц, являющихся носителями зарядов, или континуальное распределение поверхностного заряда. Эти диссипативные структуры наряду с распределением температуры и концентрации (химического потенциала) определяют основные движущие (термодинамические) силы, обусловливающие физико-химические процессы при трении.  [c.106]

И сливаются в одно целое абсолютный пространственно-временной мир теории относительности1. В такой интерпретации все релятивистские эффекты предыдущего пункта следует рассматривать как геометрические эффекты, порождаемые тем обстоятельством, что явления природы разыгрываются в геометрическом пространстве четырех измерений с квазиевклидовой структурой.  [c.343]

Понятно, что тщательный анализ экспериментов должен подтвердить подобные утверждения, если только на экспериментальные данные действительно влияет, как мы это считаем, указанная структура движения. Из приведенных нами утверждений следует невозможность последовательного истолкования понятий положение электрона и траектория электрона если все же попытаться сохранить эти понятия, то они неизбежно окажутся противоречивыми. Это противоречие настолько резко, что возникает сомнение, может ли вообще быть понята сущность движения в атоме с помощью пространственно-временной формы мышления. С философской точки зрения, я считаю решение вопроса в подобном духе равносильным полному поражению, так как мы в действительности не можем изменить своих методов мышления и все, что не познаваемо с помощью этих методов, не может быть понято вообще. Подобные случаи, возможно, существуют, но я не верю в то, что к ним относится и проблема структуры атома. С нашей точки зрения, нет никаких оснований для подобных сомнений, хотя, или лучше сказать потому, что их причина вполне понятна. Подобным образом мог бы также потерпеть крушение сторонник геометрической оптики, подходя в своих опытах к явлениям дифракции и используя понятие луча, оправданное макроскопической оптикой этот оптик мог бы в конце концов тоже прийти к мысли, что законы геометрии неприменимы к явлениям дифракции, поскольку считаемые им прямыми и независимыми друг от друга световые лучи при этих явлениях каждый раз замечательным образом закручиваются в однородной среде и заметно влияют друг на друга. Я считаю, что здесь имеет место очень тесная аналогия. Даже для необъяснимых закручиваний в атоме эта аналогия сохраняет силу — вспомним о внемеханическом принуждении , придуманном для объяснения аномального эффекта Зеемана.  [c.691]

Известные модели случайных процессов в форме спектральных, канонических и неканонических разложений случайных функций для этих целей не приспособлены [33, 34, 36, 37]. Отправным положением в этом вопросе может являться тот факт, что взаимодействие проявляется в форме сигналов, которыми обмениваются взаимодействуюгцие объекты. Каждый сигнал, детерминированный или случайный, характеризуется пространственно-временной структурой, т. е. имеет конечную длительность во времени и конечную амплитуду. Поэтому случайный процесс й t) может рассматриваться как бесконечная (или конечная) последовательность случайных сигналов, имеющих случайную продолжительность (период), случайное наибольшее значение (амплитуду) и случайную фазу. Пренебрегая значениями фазы случайного сигнала, т. е. полагая, что фазовые изменения неразличимы, в качестве периода, определяющего в статистическом смысле длительность сигнала, следует принять интервал корреляции Ткор случайного процесса й t), а его амплитудой может служить наибольшее значение процесса й на отрезке времени, равном интервалу корреляции.  [c.109]

Для диссипативных структур характерна постоянная взаимосвязь трех их особенностей функции, выражаемой уравнениями иду1цих в них химических реакций, пространственно-временной организации, обусловленной возникающими в них нестабильностями, и флуктуаций, запускающих нестабильности. Их взаимодействие приводит к весьма неожиданным явлениям, в том числе к возникновению порядка через флуктуации , анализ которого я дам ниже.  [c.137]


Сложную структуру имеют ветровые волны, характеристики к-рых определяются скоростью ветра и временем его воздействия на волну. Мехлниам передачи энергии от ветра к волне связан с тем, что пульсации давления в потоке воздуха деформируют поверхность. В свою очередь эти деформации влияют на распределение давления воздуха вблизи водной поверхности, причём эти два эффекта могут усиливать друг друга, и в результате амплитуда возмущений поверхности нарастает (см. Автоколебания). При этом фазовая скорость возбуждаемой волны близка к скорости ветра благодаря такому синхронизму пульсации воздуха действуют в такт с чередованием возвышений и впадин (резонанс во времени и пространстве). Это условие может выполняться для волн разных частот, бегущих в разл. направлениях по отношению к ветру получаемая ими энергия затем частично переходит и к другим волнам за счёт нелинейных взаимоде11Ствий (см. Волны), В результате развитое волнение представляет собой случайный процесс, характеризуемый неирерывным расиреде-ление.м энергии ио частотам и направлениям (пространственно-временным спектром). Волны, уходящие из области действия ветра (зыбь), приобретают болео регулярную форму.  [c.333]

ГОЛОГРАФИЯ АКУСТИЧЕСКАЯ — интерференционный метод записи, воспроизведения и ареобразования звуковых полей. Методы Г. а, используются в зеуко-еидении — получении изображений объектов с помощью акустич. вола, для получения амплитудно-фазовой структуры отражённых и рассеянных полей, измерения характеристик направленности акустич. антенн, пространственно-временной обработки акустич. сигналов.  [c.512]

Интерес к созданию квантовой теории гравитации не является чисто академическим. Связь Г. в. со всеми видами материи и с пространственно-временным многообразием неизбежно приведёт в будущей квантовой теории к квантованию пространства-времени и к изменению наших взглядов не только на пространство и время на сверх. 1алых расстояниях н промежутках времени, но и на понятие частицы , на процедуру измерений в микромире, к изменению структуры совр. Toopnii элементарных частиц.  [c.525]

Ряд важных неравновесных К. я. связан с появлением временных (или пространственно-временных) структур, напр. осцилляции тока в диоде Ганна, осцилляции плотностей хим. компонентов в реакции Белоусова — Жаботинского и численностей разл. видов животных в экологич. системах, распространение электрпч. волн в нервных клетках и т. п. Динамич. ур-ния для параметров порядка таких систем (активных сред) не допускают построения распределений вероятности, сходных с распределением Гиббса. Общего статпстич. подхода к описанию активных сред в настоящее время не существует. Один из наиболее интересных типов волновых К. я. в активных средах — автово.гны.  [c.457]

МЕТРИКА ПРОСТРАНСТВА-ВРЕМЕНИ — основная геом. структура, к-рой наделяется пространственно-временное многообразие в специальной и общей теории относительности определяется заданием поля симметричного ковариантного тензора 2-го ранга с отличным от нуля определителем — метрического тензора.  [c.125]

ОБЩАЯ ТЕОРИЯ ОТНОСИТЕЛЬНОСТИ (ОТО) — современная физ. теория нространства, времени и тяготения окончательно сформулирована А. Эйнштейном в 1916. В основе ОТО лежит эксперим. факт равенства инертной массы (входящей во 2-й закон Ньютона) и гравитац. массы (входящей в закон тяготения) для любого тела, приводящий к эквивалентности принципу. Равенство инертной и гравитац. масс проявляется в том, что движение тела в поле тяготения ее зависит от его массы. Это позволяет ОТО трактовать тяготение как искривление пространственно-временного континуума. Это искривление пространства-времени оиисывается метрикой, определяемой из ур-ний теории тяготения (см. Тяготение). Пространство Минковского, рассматриваемое в частной (специальной) теории относительности (т.е. в отсутствие тяготеющих тел), обладает высокой степенью симметрии, описываемой группой Пуанкаре. Эта группа в соответствии с принципом относительности порождает изоморфные последовательности событий. В пространстве, где есть поле тяготения, симметрия полностью исчезает, поэтому в нём не выполняется принцип относительности (т. е. нет сохранения относительной или внутренней структуры цепочек событий при действии группы симметрии). Назв. О. т. о. , принадлежащее Эйнштейну, является поэтому неадекватным и постепенно исчезает из литературы, заменяясь на теорию тяготения . и. ю. Кобзарев.  [c.392]

Неустойчивости плазмы. Начиная с нек-рого критич. значения электрич. тока, протекающего через П. т. т., её стационарное состояние перестаёт быть устойчивым. Это означает, что нек-рые электрич. флуктуации не затухают во времени, а неограниченно растут. Результатом является либо разрушение образца, либо возникновение новой устойчивой временной и пространственной электронной структуры. Механизмы неустойчивости могут быть различными. Наиб, ярко они проявляются в плазме полупроводников, где наряду с заметными пространственно-временными изменениями дрейфовой скорости носителей заряда возможны и вариации их концентраций. В металлах таких условий нет.  [c.603]

Переход П. т. т. в результате неустойчивости в состояние диссипативной пространственно-временной структуры может быть описан на языке неравновесного фазового перехода. Как правило, с изменением уровня возбуждения П. т. т. испытывает неск. неравновесных фазовых переходов, в результате к-рых одни диссипативные структуры заменяются другими. Примерами этих структур являются колебания концентрации носителей и (или) Т. Часто эти колебания сопровождаются изменением тока, проходящего через П. т. т. (в случае токовых неустойчивостей), так что П. т. т. в сочетании с внеш. электрич. цепью выступает как генератор электрич. колебаний. Др. примером служит инм-екционный лазер, где в результате инжекции электронов и дырок создаётся бинолярная плазма высокой плотности с инвертиров. заполнением электронных состояний в зоне проводимости по отношению к валентной зоне. Возникновение когерентного эл.-магн. излучения может быть описано как неравновесный фазовый переход.  [c.604]

Развитие неустойчивостей иногда приводит к неуно-рядоченным (стохастич.) структурам. Начиная с нек-рого высокого уровня возбуждения, П. т. т, переходит в состояние, к-рое может быть описано в вероятностной форме. Наир., генератор периодич. колебаний становится генератором неравновесного шума с большой амплитудой. Описание упорядоченных и стохастич. пространственно-временных структур происходит на основе решения одной и той же нелинейной динамич. задачи (см., напр., Странный аттрактор).  [c.604]

ПРОСТРАНСТВО и ВРЕМЯ в физике определяются в общем виде как фундам. структуры координации материальных объектов и их состояний система отношений, отображающая координацию сосуществующих объектов (расстояния, ориентацию и т. д.), образует пространство, а система отношений, отображающая координацию сменяющих друг друга состояний или явлений (последовательность, длительность и т. д,), образует время. П. ив. являются организующими структурами разл. уровней физ. познания и играют важную роль в межуровневых взаимоотношениях. Они (или сопряжённые с ними конструкции) во многом определяют структуру (метрическую, топологическую и т. д.) фундам. физ. теорий, задают структуру эипирич. интерпретации и верификации физ. теорий, структуру операциональных процедур (в основе к-рых лежат фиксации пространственно-временных совпадений в измерит, актах, с учётом специфики используемых физ. взаимодействий), а также организуют физ. картины мира. К такому представлению вёл весь историч. путь концептуального развития.  [c.156]

РАССЕЯНИЕ ЗВУКА — рассеянне звуковых волн ва пространственно-временных флуктуациях плотности и упругости раал. сред (напр., на поверхности океана, на неровном и неоднородном его дне, на пересечённой местности, на искусств, периодич. структурах и неоднородных поглощающих поверхностях, применяемых для улучшения акустич. свойств больших помещений, на дискретных неоднородностях — воздушных пузырьках и жидкости, твёрдых взвешенных частицах в жидкости или газе, на рыбах и макропланктоне в океане,  [c.269]



Смотреть страницы где упоминается термин Структуры пространственно-временные : [c.382]    [c.266]    [c.68]    [c.88]    [c.286]    [c.333]    [c.323]    [c.81]    [c.444]   
Синергетика иерархии неустойчивостей в самоорганизующихся системах и устройствах (0) -- [ c.19 ]



ПОИСК



Временные и пространственно-временные диссипативные структуры. Реакция Белоусова — Жаботинского

Временные и пространственно-временные структуры. Реакция Белоусова—Жаботинского

Ось временная

Предельный переход от упорядоченных структур к одномерной сплошной среде. Временная и пространственная дисперсия. Физическая природа дисперсии

Пространственно-временная структура выходного излучения

Пространственно-временная структура поля колебаний

Пространственно-временная структура флуктуаций интенсивности

Связь временной и пространственной структур турбулентности (гипотеза замороженноспг)

Структуры временные

Структуры диссипативные пространственно-временные

Структуры пространственные



© 2025 Mash-xxl.info Реклама на сайте