Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Фазовая самомодуляция

Эфф. формирование импульсов сжатого света возможно в процессе параметрич. усиления в поле импульсной накачки [6], а также в оптич. солитонах за счёт фазовой самомодуляции [4], необходимой для их формирования.  [c.491]

В, — на заднем фронте. Заметим теперь, что в соответствии с рис. 8.13,6 несущая частота импульса со вблизи точки А будет ниже, чем в точке С, где частота примерно равна oq. В то же время несущая частота импульса вблизи точки В будет выше, чем в С. Поскольку мы считаем, что волокно обладает положительной дисперсией групповой скорости, часть импульса вблизи точки А будет двигаться быстрее, чем часть импульса вблизи точки С, а последняя в свою очередь будет двигаться быстрее области вблизи точки В. Отсюда следует, что при распространении по волокну центральная часть импульса будет растягиваться. При помощи тех же соображений можно показать, что фронты импульса будут не растягиваться, а обостряться, так как в этих областях смещение частоты отрицательно. Поэтому истинная форма импульса как функция времени в данной точке z будет такой, как показано на рис. 8.13, а штриховой кривой. Соответствующая зависимость смещения частоты показана штриховой кривой на рис. 8.13,6. Из рис, 8.13, а мы видим, что из-за уширения, обусловленного дисперсией групповой скорости, пиковая интенсивность импульса, указанного штриховой кривой, меньше, чем для сплошной кривой. Заметим также, что поскольку параболическая часть импульса распространяется теперь на более широкую область вблизи пика, положительное линейное смещение частоты распространяется на большую часть импульса. Установив эти общие особенности взаимодействия процессов фазовой самомодуляции и дисперсии групповой скорости, мы можем показать, что если длина волокна достаточно большая, то на выходе волокна, показанного на рис, 8,12, форма импульса и смещение частоты будут изменяться во времени так, как изображено на рис, 8,14. а и б. Заметим, в частности, что положительное смещение частоты теперь линейно во времени на протяжении большей части импульса. Соответствующий спектр мощности этого импульса приведен на рис, 8,14, б. Заметим, что благодаря фазовой самомодуляции ширина спектра 50 см ) заметно превышает первоначальную ширину  [c.520]


Фазовая самомодуляция 479, 519 Фазового синхронизма угол 499  [c.553]

В соответствии с изложенным выше сжатие импульса проводится обычно в два этапа. На первом этапе производится уширение спектра. Второй этап заключается в том, что спектрально уширенный импульс пропускают через диспергирующую среду. В качестве диспергирующей среды можно использовать пару решеток. Таким методом недавно были получены оптические импульсы длительностью 30 фс [12]. Для этого оптический импульс длительностью 70 фс спектрально уширялся при распространении через оптическое волокно, а затем сжимался до 30 фс с помощью пары решеток. Спектральное уширение при прохождении импульса через волокно обусловливается фазовой самомодуляцией за счет эффекта Керра и изменения во времени оптической интенсивности.  [c.333]

Для того чтобы понять физический смысл наблюдаемого явления, полезно взглянуть на динамику спектра, изображенного на рис. 5.5 для случая N = 3. Изменения в форме импульса и его спектре возникают при совместном действии фазовой самомодуляции (ФСМ) и дисперсии групповых скоростей. При ФСМ получается положительная частотная модуляция, так что передний фронт смещается в стоксову (относительно несущей частоты) область, а задний фронт-в антистоксову область. Уширение спектра за счет ФСМ ясно видно на рис. 5.5 при z/zq = 0,2 хорошо заметна типичная для ФСМ модуляция. При отсутствии дисперсии групповых скоростей форма импульса оставалась бы неизменной (см. разд. 4.1). Отрицательная дисперсия, однако, сжимает импульс, так как он имеет положительную частотную модуляцию (см. разд. 3.2). Сокращает свою длительность только центральная область импульса, поскольку только там сдвиг частоты практически линеен. Из-за того что интенсивность импульса в центральной его области существенно увеличивается, спектр его также значительно изменяется (см. рис. 5.5 для z/zq = 0,3). Именно совместным действием дисперсионных и нелинейных эффектов объясняется характер динамики импульса, изображенной на рис. 5.4. В случае фундаментального солитона (N = 1) дисперсия и ФСМ компенсируют друг друга таким образом, что ни форма импульса, ни его спектр не изменяются при распространении по  [c.116]

Вынужденное комбинационное рассеяние (ВКР)-нелинейный процесс, который позволяет использовать световоды в качестве широкополосных ВКР-усилителей и перестраиваемых ВКР-лазеров. Но, с другой стороны, этот же процесс может резко ограничить характеристики многоканальных оптических линий связи из-за переноса энергии из одного канала в соседние каналы. В этой главе рассматриваются как применения ВКР, так и паразитные эффекты, связанные с ним. В разд. 8.1 представлены основы теории комбинационного рассеяния, причем подробно обсуждается понятие порога ВКР. В разд. 8.2 рассмотрено ВКР непрерывного или квазинепрерывного излучения. Там же обсуждаются характеристики волоконных ВКР-лазеров и усилителей и рассматриваются перекрестные помехи в многоканальных оптических линиях связи, обусловленные ВКР. ВКР сверхкоротких импульсов (СКИ), возникающее при импульсах накачки длительностью менее 100 пс, рассмотрено в разд. 8.3 и 8.4. В разд. 8.3 рассматривается случай положительной дисперсии групповых скоростей, а разд. 8.4 посвящен изучению солитонных эффектов при ВКР, возникающем в области отрицательной дисперсии групповых скоростей волоконного световода. Особое внимание уделено совместному действию дисперсионного уширения импульса с фазовой самомодуляцией (ФСМ) и фазовой кросс-модуляцией (ФКМ).  [c.216]


Картина дисперсионных самовоздействий волновых пакетов преобразование амплитудной модуляции в фазовую. В среде с нелинейным показателем преломления форма и спектр волнового пакета испытывают сильные изменения, носящие при определенных условиях характер неустойчивостей. Первым этапом в цепочке возникающих здесь разнообразных нелинейных волновых явлений является эффект фазовой самомодуляции. Особенно просто он выглядит в условиях, когда нелинейный отклик можно считать квазистатическим (3). Рассмотрим волновой пакет вида (5), распространяющийся вдоль оси г. В среде с показателем преломления (9) полный фазовый набег волны  [c.71]

Временная фазовая самомодуляция приводит, очевидно, к ушире-нию частотного спектра. Естественно, что последнее должно вызывать изменение профиля интенсивности. Простые соображения на этот счет можно дать, обращаясь к результатам 1.4. Согласно (12) скорость изменения частоты, обусловленная самовоздействием, равна  [c.71]

Временные и пространственные самовоздействия аналогии и различия. Физика самовоздействия волнового пакета проиллюстрирована на рис. 2.2, на котором качественно показано, как изменяются фаза импульса, его форма и частотный спектр s((o) по мере распространения в нелинейной диспергирующей среде с пС>0 при 2<0. Много общего с рассмотренным процессом имеет самовоздействие волнового пучка. Начальный этап самовоздействия пучка, как и волнового пакета, связан с фазовой самомодуляцией. Однако теперь это пространственная самомодуляция, при которой неоднородное распределение интенсивности за счет нелинейности показателя преломления деформирует волновой фронт. В среде с пС>0 при мощности пучка, превышающей так называемую критическую наведенная пространственная самомодуляция приводит к сжатию пучка с колоколообразным распределением интенсивности — возникает эффект самофокусировки [1].  [c.71]

Фазовая самомодуляция регулярных импульсов  [c.76]

Рис. 2.5. Спектр гауссовского импульса, испытавшего фазовую самомодуляцию, для Фтах>1 15] Рис. 2.5. Спектр гауссовского импульса, испытавшего фазовую самомодуляцию, для Фтах>1 15]
При Q l из (12) следует результат 6o) x=+Q o/4, совпадающий с таковым из теории фазовой самомодуляции 2.3 — уширения спектра симметричны относительно частоты соо-  [c.85]

Функция f z) характеризует ширину пучка, а g(z) и ф(2) — фазовую самомодуляцию в пространстве.  [c.86]

Самомодуляция, самосжатве и самофокусировка. В среде с вещественным нелинейным показателем преломления волновые пакеты и пучки испытывают фазовую самомодуляцию, к-рая за счёт дисперсии н рефракции сильно изменяет форму временной или пространственной модуляции огибающей. Для волнового пакета вида  [c.301]

ГД6 мин — мин. длительность импульса при компрессии. В качестве сред с аномальной дисперсией могут быть использованы пары металлов (в области частот вблизи однофотонного резонанса), устройства, состоящие из двух дифракц. решёток, нек-рые типы интерферометров. Оптимальной нелинейной средой для получения фазовой самомодуляции оказываются одномодовые волоконные световоды. Малость нелинейности (для кварцевого волокна % = 3,2-10" см /кВт) с избытком компенсируется возможностью поддержания устойчивого поперечного профиля пучка диам. 3 — 10 мкм па расстояниях порядка длины поглощения Z и 6 (в видимом диапазоне = 10 —10 ем). Оптич. компрессор, состоящий из волновода с нормальной дисперсией и двух дифракц. решёток, позволяет получить S 10. Существ, сжатия могут быть получены и при генерации оптич. солитонов.  [c.304]

К возникновению С. с. приводит также эффект с а-мовоздействия. При распространении излучения в среде с кубичной нелинейностью появляется фазовая добавка, пропорц. числу фотонов Пд = а+ а,, (аффект фазовой самомодуляции света). Для одноиодо-вого излучения утот эффект описывается ур-ииеи  [c.490]


Благодаря широкому диапазону перестройки, очень узкой линии лазерного излучения и возможности генерировать импульсы пикосекундной длительности лазеры на центрах окраски представляются чрезвычайно заманчивыми для применений в таких областях, как молекулярная спектроскопия и устройства, предназначенные для контроля волоконных световодов. Лазеры на центрах окраски с синхронизацией мод, излучающие на частоте Я = 1,5 мкм [КС1 Т1°( 1)], применялись для генерации очень коротких импульсов в одномодовых волокнах (длительностью около 200 фс). Здесь использовались такие свойства волокон, как фазовая самомодуляция и сжатие импульса (соли-тонный лазер) [см. также разд. 8.5].  [c.428]

Возможности таких волоконных световодов с низкими потерями привели не только к революции в области волоконно-оптической связи [14-17], но и к возникновению новой области науки-нелинейной волоконной оптики. Первые нелинейные явления (вынужденное комбинационное рассеяние и рассеяние Мандельштама-Бриллюэна) были экспериментально [18, 19] и теоретически [20] исследованы в одномодовых волоконных световодах еще в 1972 г. Эти работы стимулировали изучение других нелинейных явлений-оптически индуцированного двулучепреломления [21], параметрического четырехфотонного смешения [22, 23], фазовой самомодуляции [24, 25]. Важный результат был получен в 1973 г., когда было теоретически показано, что в оптических волокнах могут существовать солитоно-подобные импульсы, которые обусловлены совместным действием эффектов дисперсии и нелинейности [26]. Оптические солитоны позже наблюдались в эксперименте [27]. Их использование привело к большим успехам в области генерации и управления параметрами ультракоротких оптических импульсов [28-32]. В равной степени важное развитие получило использование оптических волокон для сжатия импульсов [33-36]. Были получены импульсы длительностью  [c.10]

Зависимость показателя преломления от интенсивности приводит к множеству интересных нелинейных эффектов. Два наиболее широко изученных эффекта-это фазовая самомодуляция (ФСМ) и фазовая кросс-модуляция (ФКМ). ФСМ обусловлена самонаведенным набегом фазы, который оптическое поле приобретает при распространении в волоконном световоде. Его величину можно получить, заметив, что фаза оптического поля изменяется как  [c.24]

Нелинейные свойства оптических световодов самым ярким образом проявляются в области аномальной (отрицательной) дисперсии. Здесь могут существовать так называемые солитоны-образования, обусловленные совместным действием дисперсионных и нелинейных эффектов. Сам термин солитон относится к специальному типу волновых пакетов, которые могут распространяться на значительные расстояния без искажения своей формы и сохраняются при столкновениях друг с другом. Солитоны изучаются также во многих других разделах физики [1-5]. Солитонный режим распространения в волоконных световодах интересен не только как фундаментальное явление, возможно практическое применение солитонов в волоконно-оптических линиях связи. В данной главе изучается распространение импульсов в области отрицательной дисперсии групповых скоростей, особое внимание уделяется солитонному режиму распространения. В разд. 5.1 рассматривается явление модуляционной неустойчивости. Показано, что при наличии нелинейной фазовой самомодуляции (ФСМ) стационарная гармоническая волна неустойчива относительно малых возмущений амплитуды и фазы. В разд. 5.2 обсуждается метод обратной задачи рассеяния (ОЗР), который может быть использован для нахождения солитонных рещений уравнения распространения. Здесь же рассматриваются свойства так называемого фундаментального солитона и солитонов высщих порядков. Следующие две главы посвящены применению солитонов в некоторых системах. В разд. 5.3 рассматривается солитонный лазер разд. 5.4 посвящен использованию солитонов в волоконно-оптических линиях связи. Нелинейные эффекты высщих порядков, такие, как дисперсия нелинейности и задержка по времени нелинейного отклика, рассматриваются в разд. 5.5.  [c.104]

Одним из важнейших применений нелинейных эффектов в волоконных световодах является сжатие оптических импульсов экспериментально были получены импульсы длительностью вплоть до 6 фс. В данной главе рассмотрены методы компрессии импульсов, их теоретические и экспериментальные аспекты. В разд. 6.1 изложена основная идея, представлены два вида компрессоров, обычно используемых для сжатия импульсов,- волоконно-решеточные компрессоры и компрессоры, основанные на эффекте многосолитонного сжатия. В волоконно-решеточном компрессоре используется отрезок волоконного световода с положительной дисперсией групповых скоростей, за которым следует дисперсионная линия задержки с отрицательной дисперсией групповых скоростей, представляющая собой пару дифракционных решеток. Дисперсионная линия задержки рассмотрена в разд. 6.2, в то время как в разд. 6.3 представлены теория и обзор экспериментальных результатов. В компрессорах, основанных на эффекте многосолитонного сжатия, используются солитоны высших порядков, которые существуют в световоде благодаря совместному действию фазовой самомодуляции (ФСМ) и отрицательной дисперсии. Теория такого компрессора представлена в разд. 6.4, далее следуют экспериментальные результаты. Следует отметить, что в одном из экспериментов по компрессии оптические импульсы были сжаты в 5000 раз при этом была использована двухкаскадная схема сжатия, в которой за волоконно-решеточным компрессором следовал оптимизированный компрессор, основанный на эффекте многосолитонного сжатия.  [c.147]

Когда две и более оптические волны вместе распространяются по световоду, из-за нелинейности световода они могут взаимодействовать друг с другом. Вообще, в результате этого за счет таких эффектов, как вынужденное комбинационное рассеяние, вынужденное рассеяние Мандельштама Бриллюэна, генерация гармоник, четырехволновое смешение, при определенных условиях могут возникать новые волны все эти процессы рассматриваются в гл. 8-10. В то же время нелинейность световода вызывает взаимодействие между распространяющимися волнами за счет эффекта, называемого фазовой кросс-модуляцией (ФКМ). ФКМ всегда сопровождается фазовой самомодуляцией (ФСМ) и возникает из-за того, что эффективный показатель преломления какой-либо волны зависит не только от интенсивности самой этой волны, но и от интенсивности других волн, распространяющихся с ней совместно [1, 2].  [c.172]


Нелинейные эффекты в одномодовых световодах не должны приводить к изменению пространственного распределения оптического поля. Иная ситуация в многомодовых световодах. Недавно экспериментально наблюдалась самофокусировка импульса ВКР при распространении импульса накачки длительностью 25 пс по световоду с диаметром сердцевины 100 мкм [51]. В другом эксперименте [52] распространение импульса ВКР в области аномальной дисперсии многомодового световода приводило к формированию фемтосекундных солитонов (длительностью 70-100 фс), которые распространялись в основной моде, хотя импульсами накачки (длительностью 150 пс) возбуждалось множество мод. Интересные результаты были получены в эксперименте [53] по фазовой самомодуляции в градиентных многомодовых световодах, где она проявляет качественно новые черты по сравнению с тем, что наблюдалось в одномодовых световодах (см. гл. 4). Все эти результаты указывают на то, что систематическое изучение нелинейных эффектов в многомодовых световодах представляет несомненный интерес. Данные исследования находятся в начальной стадии и ждут своего продолжения.  [c.319]

Поведение волнового пакета, как показано в 1.4, определяется знаком дисперсии среды. Особый интерес представляет случай aki<.0, поскольку позволяет указать путь самосжатия световых импульсов. Фазовая самомодуляция вызывает компрессию импульса, что в свою очередь увеличивает темп самомодуляции.  [c.71]

Гришковский и др. [22] непосредственно наблюдали искажение формы 10 НС импульса лазера на красителе в парах Rb, обусловленное формированием ударной волны огибающей, фазовой самомодуляцией, дисперсией линейной и нелинейной частей показателя преломления (рис. 2.8). Для пико- и фемтосекундных импульсов прямые наблюдения формы пока невозможны, информацию о характере самовоздействия в этом диапазоне длительностей можно получить из спектра. Вид спектрального уширения в условиях проявления описываемой уравнениями  [c.83]

Явление фазовой самомодуляции на спектральном языке проявляется как уширение спектра импульса. Ширина спектра, как показано в 2.3—2.5, зависит от нелинейности среды и пройденного расстояния. Однако в целом ряде экспериментов с импульсами пико- и фемтосекундной длительности наблюдались уширения спектра, существенно превышающие предсказываемые формулой (2.3.11), простирающегося, как правило, от ультрафиолетового до инфракрасного излучения. Этот эффект принято называть сверхуширением или генерацией суперконтинуума. Исследования сверхуширения спектра пикосекундных импульсов проводились главным образом в 70-е годы (см., например, [43—48]), В последнее время были выполнены эксперименты по сверх-уширению спектра фемтосекундных импульсов [49—52]. Интерес к постановке таких опытов связан с весьма высокими интенсивностями и напряженностями электрических полей, которые можно получить с этими импульсами. Ниже мы остановимся на некоторых результатах экспериментов с фемтосекундными импульсами.  [c.91]


Смотреть страницы где упоминается термин Фазовая самомодуляция : [c.338]    [c.479]    [c.519]    [c.9]    [c.77]    [c.77]    [c.79]    [c.81]    [c.83]    [c.87]    [c.89]    [c.91]    [c.93]    [c.95]    [c.97]    [c.99]    [c.101]    [c.103]    [c.154]    [c.40]    [c.74]    [c.77]   
Дифракция и волноводное распространение оптического излучения (1989) -- [ c.627 ]



ПОИСК



Дисперсионная фазовая самомодуляция

Фазовая самомодуляция импульсов в нелинейной среде

Фазовая самомодуляция регулярных импульсов

Фазовая самомодуляция. Сжатие лазерных импульСОВ



© 2025 Mash-xxl.info Реклама на сайте