Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

РАЗВИТИЕ ФОТОННЫХ ПРЕДСТАВЛЕНИЙ

РАЗВИТИЕ ФОТОННЫХ ПРЕДСТАВЛЕНИЙ  [c.15]

В данной монографии разрабатывается статистическая теория связи на базе фотонного представления излучения. В ней обобщены, систематизированы и дополнительно развиты вопросы статистической теории связи с учетом именно фотонной природы электромагнитного излучения. -Анализ современного состояния теории свидетельствует о том. что в настоящее время необходимо подвести итог начального этапа в развитии указанного направления. Отчетливо представляя, что всякое подведение итога исследований в столь бурно развивающейся области, какой является лазерная техника, быстро теряет новизну, автор тем не менее считает, что в настоящее время целесообразно подвести предварительные итоги в области статистической теории передачи информации в оптическом диапазоне.  [c.5]


Вскоре квантовые представления получили свое дальнейшее развитие. Эйнштейн в 1905 г. при построении теории фотоэффекта ввел понятие элементарных частиц излучения — фотонов, являющихся носителями электромагнитной энергии, обладающих рядом характерных свойств и имеющих запас энергии, равный энергии кванта.  [c.11]

После изложенных соображений, касающихся существа предмета (квантовой оптики), обратимся к данному учебному пособию. Оно состоит из четырех частей 1. Развитие фотонных представлений. 2. Физика микрообъектов. 3. Квантовооптические явления. 4. Теоретические основы квантовой оптики. В первой части на основе ставших классическими работ Планка, Бора, Эйнштейна рассматриваются рождение и становление квантовой теории света, излагаются свойства фотона и фотонных ансамблей, демонстрируется переход от волновых представлений к квантовым. Во второй части анализируются некоторые принципиальные вопросы квантовой физики это позволяет объяснить интерференционные эффекты на корпускулярном языке. В третьей части приводятся необходимые сведения из физики твердого тела и затем обстоятельно рассматриваются три группы оптических явлений фотоэлектрические, люминесцентные, нелинейно-оптические эти явления иногда объединяют термином квантово-оптические . Вопросы, излагаемые в указанных трех частях пособия, составляют содержание раздела Квантовая природа света ,  [c.5]

Работа, опубликованная М.Планком в начале XX в., не сразу встретила признание. Многие видные фиаики гого времени были склонны считать предложенный Планком способ вычисления VV > неким математическим фокусом, не имеющим серьезного физического смысла. Большой заслугой Эйнштейна является своевременная поддержка и развитие этой принципиально новой идеи, обусловившей революционные преобразования в физике. В частности, Эйнштейн сразу же предложил использовать формулу Планка для объяснения зависимости теплоемкости твердых тел от температуры вблизи О К, истолковал опыты по фотоэффекту, введя понятие фотона и заложив основы квантовой оптики (см. 8.5). Об этом стоит упомянуть, так как в популярной литературе иногда встречаются попытки представить Эйнштейна ученым, завершившим классическую физику, но не принявшим квантовых представлений. Это совсем неправильная точка зрения. Эйнштейн, бесспорно, был одним из творцов новой квантовой физики, а его сомнения и поиски смысла вероятностного описания, свойственного дальнейшему развитию квантовой механики, отражают глубину подхода этого гениального ученого ко всем проблемам естествознания. Другое дело, что по многим причинам, из которых не последнюю роль играли многолетние попытки решить непомерно трудную задачу создания единой теории поля, за последние 30 лет своей жизни Эйнштейн не внес существенного вклада в бурное развитие квантовой физики.  [c.426]


Следует учитывать, что развитие современной оптики — это развитие как электромагнитной теории света, чак и физики фотонов. Такое утверждение необходимо подчеркнуть, так как иногда высказывается точка зрения, сводящаяся к представлению об 1лектромагнитной теории света как о науке, завершенной трудами ее создате.-1я Максве.тла и других знаменитых физиков, работавших на рубеже XIX и XX вв. Все пос.чедуюпше успехи оптики часто связывают только с развитием физики фотонов. Такая точка зрения неправильна и несовременна, так как при этом фактически противопоставляются две стороны одного и того же сложного процесса, требующего дуального описания.  [c.462]

Анализ коррелящюнных функций стал предметом современной радиометрии, значительное развитие которой за последние 20 лет связано с космическими программами, где необходимы точные радиометрические измерения. В то время как классическая радиометрия основывалась главным образом на измерении средней спектральной плотности излученной энергии, эксперименты по измерению когерентности первого и второго порядка (разд. 1.8) открыли новые перспективы, связанные с разработкой систем, в которых используются лазеры. В настоящее время мы находимся на той стадии, когда радиометрия вовлекает в себя квантовую теорию когерентности. Это основано на развивающемся начиная с 1963 г. (работы Глаубера [35] и Сударшана [36]) квантовостатистическом описании полей излучения. Глаубер ввел в квантовую электродинамику так называемые когерентные состояния поля, переходящие при обращении в нуль постоянной Планка (что соответствует большому числу фотонов в поле) в классические синусоидальные колебания вектора поля с данной амплитудой и фазой, которые записываются в виде (г, /) = оехр( /к г)ехр(/(оЛ). Полезным аналитическим методом статистического описания квантованного поля является Р-представление, которое в классическом пределе соответствует распределению плотности вероятности для ком-  [c.320]

Данный нами анализ оптических свойств с самого начала базировался на приближении самосогласованного поля. Мы заметили, однако, что прямое использование формулы Кубо — Гринвуда с моделью невзаимодействующих электронов ведет к ошибке (даже если включить статическое экранирование псевдопотеициала).Если вычислять вместо этого отклик системы в присутствии трех возмущений (света, неэкранированного псевдопотеициала и электрон-электронного взаимодействия), то мы придем к замене статической диэлектрической проницаемости диэлектрической проницаемостью, зависящей от частоты. Если говорить на языке процессов, происходящих во время поглощения (или на языке теории возмущений), то более точные вычисления соответствуют учету вкладов от процессов, в которых, например, электрон поглощает фотон, сталкивается со вторым электроном, рассеивается решеткой и снова сталкивается со вторым электроном. Обескураживает, что этот более сложный процесс, который соответствует высшему порядку теории возмущений, ведет тем не менее к поправкам псевдопотеициала того же порядка, что и для невзаимодействующих электронов. Б этом случае э< х])ект оказывается малым, но нельзя быть уверенным, что дело будет обстоять так же и для всех других возможных процессов. Эта проблема была недавно частично решена, по крайней мере для мягких рентгеновских спектров, работами Нозьера и др. 133, 34). Хотя они основаны на технике теории многих тел, которую мы здесь не обсуждаем, центральные результаты можно понять и иа основе развитых в этой книге представлений. Более обширная дискуссия с точки зрения, подобной нащей, была дана Фриделем [36].  [c.388]

Несмотря на успехи электродинамич. теории, выяснилось, что она явно недостаточна для описания процессов поглош ения и испускания света. Особенно отчётливо это проявилось в парадоксальности выводов теории (про-тиворечащ их закону сохранения энергии) из анализа распределения по длинам волй равновесного теплового излучения (излучения абсолютно чёрного тела). Рассматривая эту принципиальную проблему, нем. физик М. Планк пришёл к заключению (1900), что элементарная колебат. система (атом, молекула) отдаёт волн, энергию эл.-магн. полю или получает её от него не непрерывно, а порциями, пропорциональными частоте колебат ний, квантами. Развитие идеи Планка, противоречащей классич. представлениям, не только дало удовлетворит, решение проблемы теплового излучения, но и заложило основы всей совр. к вант. физики. Работы Планка и Эйнштейна (1905), к-рый приписал квантам света — фотонам, кроме энергии, также импульс и массу, вернули О. мн. черты корпускулярных представлений.  [c.493]


Открытие Э. ч. явилось закономерным результатом общих успехов в изучении строения в-ва, достигнутых физикой к кон. 19 в. Первой открытой Э. ч. был эл-н — носитель отрицат. электрич. заряда в атомах (англ. физик Дж. Дж. Томсон, 1897). В 1919 англ. физик Э. Резерфорд обнаружил среди ч-ц, выбитых из ат. ядер, протоны — ч-цы с единичным положит, зарядом и массой, в 1840 раз превышающей массу эл-на. Другая ч-ца, входящая в состав ядра,— нейтрон — была открыта в 1932 англ. физиком Дж. Чедвиком. Представление о фотоне как ч-це берёт своё начало с работы нем. физика М. Планка (1900), выдвинувшего предположение о квантованности энергии эл.-магн. излучения абсолютно чёрного тела. В развитие идеи Планка А. Эйнштейн (1905) постулировал, что эл.-магн. излучение явл. потоком отд. квантов (фотонов), и на этой основе объяснил закономерности фотоэффекта. Прямые эксперим. доказательства существования фотона были даны амер. физиками Р. Милликеном (1912—15) и  [c.896]


Смотреть страницы где упоминается термин РАЗВИТИЕ ФОТОННЫХ ПРЕДСТАВЛЕНИЙ : [c.6]    [c.318]    [c.76]    [c.253]   
Смотреть главы в:

Введение в квантовую оптику  -> РАЗВИТИЕ ФОТОННЫХ ПРЕДСТАВЛЕНИЙ



ПОИСК



Фотонное эхо

Фотоны



© 2025 Mash-xxl.info Реклама на сайте