Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Растворы теория

Это тем более важно, что на сегодняшний день, несмотря на наличие большого количества работ 1, 26, 29, 45 и др. . посвященных исследованию свойств жидких растворов, теории, которая позволяла бы определять свойства растворов по их составу и известным свойствам компонентов в чистом виде, пока еще пет.  [c.79]

Некоторые темы пришлось опустить или осветить сжато, чтобы не увеличивать чрезмерно объема книги, сделав особый упор на другие вопросы, редко освещаемые с достаточной полнотой. Так, много места в ней отводится точечным дефектам, структуре и механическим свойствам твердых растворов, теории фазовых превращений, рекристаллизации, сверхчистым метал-лам, ферромагнетизму и механическим свойствам двухфазных сплавов. 1)  [c.10]


Явление вращения плоскости поляризации наблюдается, как указывалось, и в растворах. Теория молекулярного вращения плоскости поляризации в растворе объясняет это явление асимметричным строением молекул. Асимметрия молекул, из которых состоит активное вещество, заключается в асимметричном пространственном расположении атомов в молекуле. Возможны так же, как и в кристалле разновидности структуры кристаллов, представляющие зеркальные изображения друг друга, что определит правое или левое вращение. Естественно, что чем больше молекул, т. е. чем выше концентрация, тем более должно быть заметно явление вращения плоскости поляризации. Отметим, что явление вращения плоскости поляризации широко используется для определения концентрации растворов сахара, никотина, камфоры, кокаина и др., которые обладают большим удельным вращением. Удельное вращение растворов соответствует слою толщиной 10 см, деленному на концентрацию. Например, для тростникового сахара 6,67°, а для скипидара — Ра = = 29,6°. Приборы, предназначенные для измерения концентрации растворов по повороту плоскости поляризации, имеют название сахариметров или поляриметров.  [c.232]

Обсудить влияние этого результата (i) на результат уравнения (4-4.49), (ii) на теорию химического потенциала в растворах (если ф — число молей рассматриваемого компонента).  [c.166]

Будут ли выполняться для данного материала при конечных деформациях уравнение (6-3.1) или (6-3.3) или другие возможные линейные соотношения, следует решить на основании сравнения с экспериментом. Действительно, уравнение (6-3.3) дает результаты, лучше согласующиеся с экспериментальными данными по полимерным материалам, чем результаты, полученные на основании уравнения (6-3.1). Кроме того, уравнение (6-3.3) получает некоторое обоснование в рамках структурных теорий полимерных растворов и расплавов [5].  [c.217]

На основании статистической теории были выдвинуты различные предложения для выражения избыточной свободной энергии как функции концентрации. Так как микроструктура жидкого раствора неизвестна, каждое предложение обязательно основывается на упрощенной модели жидкости и содержит определенные ограничения. Однако полученные соотношения полезны для сопоставления экспериментальных данных. Дальнейшие успехи в определении коэффициентов активности несомненно позволяют проверить уже установленные методы.  [c.258]


Согласно теории (Вагнер, Хауффе и др.), малая добавка легирующего элемента должна окисляться с образованием ионов определенной валентности и, растворяясь в окисле основного металла,  [c.111]

Согласно теории Нернста, к поверхности твердого тела прилегает тонкий слой неподвижной жидкости толщиной 6, в котором происходит диффузия растворяющегося вещества. За пределами этого слоя движение жидкости, увлекающей растворенное вещество, приводит к поддержанию постоянства концентрации во всем остальном объеме раствора. Толщина б получила название толщины диффузионного слоя Нернста. Она зависит только от скорости перемещения диффундирующего вещества  [c.205]

По теории необратимых (стационарных) электродных потенциалов металлов А. Н. Фрумкина (см. с. 176), электрохимическое саморастворение (коррозия) металла является результатом нарушения равновесного обмена катионами между металлом и раствором  [c.217]

Теория строения двойного электрического слоя приводит к выводу, что в разбавленных растворах кислот, не содержащих посторонних электролитов  [c.254]

Таким образом, теория замедленного разряда дает хорошее совпадение коэффициента bg с опытными данными и объясняет также зависимость т] от pH раствора и строения двойного электрического слоя.  [c.255]

Таким образом, рекомбинационная теория объясняет зависимость перенапряжения водорода от материала катода чем больше склонность металла к взаимодействию с атомами водорода (высокая энергия адсорбции, образование твердых растворов, способность металла катализировать рекомбинацию водородных атомов), тем легче протекает рекомбинация водородных атомов и тем ниже перенапряжение водорода.  [c.258]

Исследования советских электрохимиков за последние годы показали, что эта теория не учитывает ряда серьезных факторов (pH раствора, природы раствора и др.) и что возможны и другие толкования механизмов удаления водорода с поверхности металла. Можно отметить, что теория замедленного разряда достаточно хорошо подтверждается экспериментальными и расчетными данными для металлов с высоким перенапряжением водорода. При ПОМОП.1И этой теории можно объяснить зависимость перенапряжения водорода от плотности тока, концентрации водородных ионов, наличия в растворе посторонних электролитов и поверхностно-активных веществ, часто специально вводимых в электролит.  [c.42]

Поскольку примеси в металле играют роль локальных элементов, можно ожидать, что их уменьшение значительно повысит коррозионную стойкость металла. Поэтому, например, алюминий или магний высокой чистоты более устойчивы к коррозии в морской воде или кислотах, чем технические металлы, а специально очищенный цинк менее растворим в соляной кислоте, чем технический. Однако ошибочно полагать, что чистые металлы вообще не подвержены коррозии, как считалось много лет назад, когда была предложена первая электрохимическая теория. Как мы увидим далее, локальные элементы возникают также при изменениях температуры или других параметров среды. Например, на поверхности железа или стали, покрытой пористым слоем ржавчины (оксиды железа), в аэрированной воде отрицательными электродами являются участки поверхности железа в порах оксидного слоя, а положительными — участки ржавчины, открытые для соприкосновения с кислородом. Отрицательные и положительные электродные участки меняются местами и перемещаются по поверхности в ходе коррозионного процесса.  [c.22]

Согласно адсорбционной теории, пассивность хрома и нержавеющих сталей, благодаря их повышенному сродству к кислороду, может достигаться путем непосредственной хемосорбции кислорода из воздуха или водных растворов. Количество кислорода, адсорбированного таким образом, имеет тот же порядок величины, что и пассивная пленка на железе, образованная путем анодной пассивации или пассивации в концентрированной азотной кислоте или хроматах [27]. Сходным образом атмосферный кислород может адсорбироваться непосредственно на железе и запассивировать его в аэрируемых щелочных растворах, а также в растворах близких к нейтральным с повышенным парциальным давлением кислорода .  [c.82]

С другой стороны, согласно адсорбционной теории [16], ионы С1 адсорбируются на поверхности металла, конкурируя с растворенным О2 или 0Н . Достигнув поверхности металла, С1 способствует гидратации ионов металла и облегчает переход их в раствор, в противоположность влиянию адсорбированного кислорода, который снижает скорость растворения металла. Иначе говоря, адсорбированные ионы С1 повышают ток обмена (снижают перенапряжение) для анодного растворения перечисленных металлов по сравнению с наблюдаемым для поверхности, покрытой кислородом. В результате железо и нержавеющие стали часто невозможно анодно запассивировать в растворах, содержащих значительные концентрации С . Напротив, металл продолжает растворяться с высокой скоростью как при активных, так и при пассивных значениях потенциала.  [c.84]


Согласно оксидно-пленочной теории, критический потенциал — это. потенциал, необходимый для создания в пассивирующей пленке электростатического поля, способного стимулировать проникновение ионов С1 к поверхности металла [40]. Другие анионы также могут проникать в оксид, в зависимости от их размера и заряда. Примеси этих анионов улучшают ионную проводимость и благоприятствуют росту оксида. В конечном счете оксид или разрушается из-за конденсации мигрирующих вакансий, или его катионы растворяются в электролите на границе раздела сред в обоих случаях начинается питтинг. Предшествующий питтингообразованию индукционный период зависит от времени, которое требуется С1 для проникновения через оксидную пленку.  [c.87]

Как мы уже усвоили, электрохимическая теория корро аии связывает процесс коррозии с работой целой сети коротко-замкнутых гальванических элементов на поверхности металла. Ионы металла переходят в раствор на анодных участках в количестве химически эквивалентном реакции, протекающей на катодных участках. На анодных участках идет следующая реакция  [c.99]

Некоторые из предложенных объяснений склонности ферритных нержавеющих сталей к межкристаллитной коррозии основаны на разнице скоростей растворения различных образующихся карбидов или на предполагаемой большей реакционной способности напряженной кристаллической решетки металла. Однако наиболее убедительное объяснение получено с помощью теории, широко используемой для объяснения этих явлений в аустенитных нержавеющих сталях. Согласно этой теории, разрушения происходят вследствие обеднения границ зерен хромом [36—38]. Различия в температурах и времени, необходимых для сенсибилизации этих сталей, объясняются более высокими скоростями диффузии углерода, азота и хрома в ферритной объемно-центрированной кубической решетке по сравнению с аустенитной гранецентрированной. В соответствии с этим, карбиды и нитриды хрома, которые растворены при высокой температуре, ниже  [c.310]

Теория сильных электролитов, развитая П. Дебаем, более сложная, так как при растворении ионных кристаллов ионы будут гидратироваться и уходить в раствор, в котором они молекул образовывать не будут.  [c.289]

При статистико-механическом рассмотрении свойств растворов наиболее часто используются различные. варианты так называемой решеточной модели раствора (см. (27, 31, 34, 47, ЦО, 134, 136]) при рассмотрении свойств ассоции-Р0В9ИНЫХ неводных растворов — теории ассоциативных равновесий (см. [31, 66,73,109]).  [c.87]

Кривые АН х) для многих систем близки к симметричным. Как известно, симметричность кривых термодинамических функций вытекает из решеточных теорий (теория регулярных растворов Гиль-денбранда, теория строго регулярных растворов, теория конфор-мальных растворов), которые принимают ряд упрощающих допущений (равенство размеров и сферическая форма молекул, их статистически равномерное распределение в растворе, учет только парных взаимодействий). Эти допущения никогда не выполняются в полной мере в реальных системах, однако для систем рассматриваемой группы они все же более или менее приемлемы таким образом, данные о величинах АН позволяют оценить, насколько близок раствор к упрощенной модели. Характерным примером систем, где симметричность АН(х) почти совершенна, является система четыреххлористый углерод — циклогексан.  [c.31]

Как уже упоминалось выше, в основе этого метода лежит ионный обмен между осадками гидроокисей и раствором. Теория и экспериментальная техника этого метода разработаны Н. С. Фортунатовым  [c.156]

БУФЕРНАЯ СМЕСЬ, раствор соли вместе с ее к-той или основанием. Она обладает способностью почти не менять Рн при разбавлении, концентрировании или добавлении к-т или оснований в количестве, не превышающем нек-рого предела. Б. с. имеют большое практич. вначение. Почти все жизненные процессы, напр, в крови животных и т. д., могут безболезненно протекать при значении Рн, лежащем в нек-ром сравнительно малом интервале. Поэтому там, где необходимо должно сохраниться значение Ри, имеется или искусственно вводится B. . в крови В. с. состоит из карбонатов и фосфатов. Так как В. с. имеет определенное значение Рн, возможно использовать ее вместе с соответствующим индикатором для калориметрич. определения вначения Ра в каком-либо растворе. Теория буферных растворов в основе базируется на теории электролитической диссоциации слабых электролитов. Примером Б. с. может служить смесь 1/ц, N раствора уксусной к-ты и i/i N уксуснокислого натра. Вычислить Рн этой Б. с. можно след, образом. Из ур-ия диссоциации уксусной к-ты  [c.36]

Возникнув на почве изучения водных растворов, теория Д. э. была в дальнейшем распространена и на растворы электролитов в неводных растворителях (см. Растворы). Вальдену путем исследования значительного числа растворителей удалось подтвердить гипотезу Дж. Дж. Томсона и Нернста о зависимости Д. э. в растворе от диэлектрических свойств растворителя.  [c.433]

Наиболее достоверное объяснение природы мелкозернистости дает так называемая теория барьеров. Алюминий, введенный в жидкую сталь иеза-долго до ее разливки по изложницам, образует с растворенным и жидкой стали азотом и кислородом частицы гштридов и оксидов (АШ, АЬОз). Эти соединения растворяются в жидкой стали, а после ее кристаллизации и последующего охлаждения выделяются ц виде мельчайших субмикроскопиче-ских частиц ( неметаллическая пыль ). Последние, располагаясь преимущественно по граница vt зерна, препятствуют его росту.  [c.241]

Эта теория относится к области концентраций 1 и 2. Рассматривается упрощенная модель окисления бинарного сплава Me Mt с содержанием металлов в нем с и (1 —с) соответственно, образующих непрерывный ряд твердых растворов при всех значениях с. При окислении сплава образуется окисел Ме О или Mtfim, в кристаллической решетке которого на местах атомов  [c.88]

Теория растворов Дебая и Гюккеля дает возможность получить уравнение двойного слоя  [c.159]


Нернст полагал, что электродный потенциал металла возникает в результате обмена ионами между металлом и раствором, но в качестве движущих сил этого обмена ионами Нернстом были приняты электролитическая упругость растворения металла Р и осмотическое давление растворенного вещества я. На этой основе им была создана качественная картина возникновения скачка потенциала на границе металл—раствор и количественная зависимость величины скачка этого потенциала для металлических электродов первого рода от концентрации раствора. Из теории Нернста, в частности, следовал вывод о независимости стан-дартньга ( нормальных ) потенциалов электродов от природы растворителя, поскольку величина электролитической упругости растворения Р, определяющая нормальный (или стандартный) потенциал металла, не являлась функцией свойств растворителя, а зависела только от свойств металла.  [c.216]

В 1914 г. Л. В. Писаржевским было дано новое толкование электродных процессов, позволившее заменить формальную схему осмотической теории Нернста реальной физической картиной. Несколько позже (1926 г.) аналогичные идеи высказаны И. А. Изгарышевым и А. И. Бродским. По Л. В. Писаржевскому, причинами перехода ионов металла в раствор являются диссоциация атомов металла на ионы и электроны и стремление образовавшихся ионов сольватиро-ваться, т. е. вступать в соединение с растворителем. Необходимо, следовательно, учитывать два равновесия одно — между атомами металла и продуктами его распада (ионы и электроны) и другое — при сольватации (в водных растворах — гидратации). Таким образом, потенциал металла, погруженного в раствор, зависит от обоих процессов и состоит из двух слагаемых, одно из которых зависит от свойств металла, а второе — от свойств как металла, так и растворителя. Эти новые взгляды, основанные на электронных представлениях, качественно совпадают с современными представлениями, которые, таким образом, были предвосхищены Л. В. Писаржевским задолго до квантовой механики, статистики Ферми и других современных теоретических методов,  [c.216]

Недостатками рекомбинационной теории перенапряжения водорода являются 1) несоответствие теоретического и опытного значения коэффициента (Ьопытн = 4Ь.георет) 2) независимость т) от состава раствора [сн+. не входит в уравнение (547) для т)], что противоречит опыту 3) при предельном насыш,ении поверхности катода Над<. должно быть предельное значение тока, чего пока не наблюдалось.  [c.258]

Кислород образует с металлом твердый раствор, вследствие чего анодный процесс тормозится. Влияние окисных пленок этой теорией, сходной с электрохимической адсорбционной теорией, отрицается. Эта теория не объясняет активируюш,его действия хлор-ионов.  [c.309]

Теория пассивационного барьера (А. И. Красильщиков) исходит из того, что анодная поляризация металла в зависимости от места локализации скачка потенциала металл—раствор может приводить как к увеличению, так и к торможению скорости процесса его растворения.  [c.310]

Существует ряд теорий, объясняющих появление в этих сталях склонности к межкристаллитной коррозии. Наиболее общепринятой и достаточно хорошо обоснованной теорией, объясняющей механизм межкристаллитной коррозии, является теория обеднения твердого раствора по границам зерен хромом из-за тлдслеиия в этой зоне карбидов хрома. Хром — элемент, более склонный к карбидообразованию, чем железо, а никель не обладает способностью образовывать карбиды. Однако сам факт выделения карбидов хрома по границам зерен не мог бы вызвать обедненне сплава хромом, если бы скорости диффузии углерода н хрома б лли одинаковы. Причиной обеднения границ зерен хромом является высокая скорость диффузии углерода и низкая скорость диффузии хрома, вследствие чего в образовании карбидов участвует почти весь углерод сплава, а хром — только пограничной зоны, где и идет образование карбидов.  [c.163]

Вагнер [4] предложил уточнение первого определения металл является пассивным, если при возрастании потенциала электрода скорость анодного растворения в данной среде резко падает. Вариант металл является пассивным, если при возрастании концентрации окислителя в растворе или газовой фазе скорость окисления в отсутствие вг.ешнего тока становится меньше, чем при более низких концентрациях окислителя. Эти альтернативные определения равнозначны в тех условиях, где применима электрохимическая теория коррозии.  [c.71]

Согласно второй точке зрения, металлы, пассивные по определению 1, покрыты хемосорбционной пленкой, например, кислородной. Такой слой вытесняет адсорбированные молекулы HjO и уменьшает скорость анодного растворения, затрудняя гидратацию ионов металла. Другими словами-, адсорбированный кислород снижает плотность тока обмена (повышает анодное перенапряжение), соответствующую суммарной реакции М -f гё. Даже доли монослоя на поверхности обладают пассивирующим действием [16, 17]. Отсюда следует предположение, что на начальных этапах пассивации пленка не является диффузионно-барьерным слоем. Эту вторую точку зрения называют адсорбционной теорией пассивности. Вне всякого сомнения, образованием диффузионно-барьерной пленки объясняется пассивность многих металлов, пассивных по определению 2. Визуально наблюдаемая пленка сульфата свинца на свинце, погруженном в H2SO4, или пленка фторида железа на стали в растворе HF являются примерами защитных пленок, эффективно изолирующих металл от среды. Но на металлах, подчиняющихся определению 1, основанному на анодной поляризации, пленки обычно невидимы, а иногда настолько тонки (например, на хроме или нержавеющей стали), что не обнаруживаются методом дифракции быстрых электронов . Природа пассивности металлов и сплавов этой группы служит предметом споров и дискуссий вот уже 125 лет. Представление, что причиной пассивности всегда является пленка продуктов реакции, основано на результатах опытов по отделению и исследованию тонких оксидных пленок с пассивного железа путем его обработки в водном растворе KI + I2 или в ме-танольных растворах иода [18, 19]. Анализ электроно рамм пле-  [c.80]

При катодной поляризации хрома, нержавеющих сталей и пассивного железа пассивность нарушается вследствие восстановления пленки пассивирующего оксида или пленки адсорбционного кислорода (в зависимости от принятой точки зрения на природу пассивности). К тому же, согласно адсорбционной теории, атомы водорода, образующиеся при разряде ионов Н+ на переходных металлах, стремятся раствориться в металле. Растворившийся в металле водород частично диссоциирован на протоны и электроны, а электроны способны заполнять вакансии d-уровня атомов металла. Следовательно, переходный металл, содержащий достаточное количество водорода, более не в состоянии хемосорбиро-вать кислород или пассивироваться, так как у него заполнены d-уровни.  [c.98]

Позднее эта точка зрения была распространена и на металлы, которые не образуют интерметаллидных соединений, но для которых характерно изменение фаз йли образование сегрегаций легирующих элементов или примесей в вершине трещины в ходе пластической деформации вследствие градиента состава здесь образуются гальванические элементы. Варианты этой теории содержат предположение, что трещины образуются механически и что электрохимическое растворение необходимо только для периодического сдвига барьеров при росте трещины [25]. Но хрупкое разрушение пластичного металла вряд ли возможно в вершине трещины. Кроме того, было показано, что удаление раствора Fe lg из трещины, образованной в напряженном монокристалле ujAu, сопровождается релаксацией напряжений в кристалле и —. .в результате —немедленным прекращением растрескивания, сменяющимся пластической деформацией [26]. Аналогичным образом, трещина, распространяющаяся в напряженной нержавеющей стали 18-8, погруженной в кипящий раствор Mg lj, останавли-  [c.138]


Для проверки применимости электрохимической теории коррозионного растрескивания был поставлен специальный эксперимент. Он заключался в измерении критического потенциала инициирования КРН нержавеющей стали 18-8 в кипящем при 130 °С растворе хлорида магния с добавками и без добавок ингибирующих анионов [22]. Анодная поляризация тем скорее вызывает растрескивание, чем положительнее потенциал катодная поляризация, наоборот, увеличивает время до растрескивания. При потенциале ниже критического значения —0,145 В сплав становится практически устойчив (рис. 7.5, а). Добавление различных солей (например, СНзСООНа) к раствору Mg lj повышает критический потенциал. Когда критический потенциал становится положительнее потенциала коррозии, КРН прекращается (рис. 7.5, Ь). Следовательно, если критический потенциал равен потенциалу анода разомкнутой цепи, характеризующему катодную защиту, при которой скорость коррозии равна нулю (см. разд. 4.10), потенциал коррозии не может быть ниже критического. Однако, ввиду того что критический потенциал может быть и ниже, и выше потенциала коррозии, он должен иметь другое объяснение.  [c.140]

При некоторых сочетаниях металл—раствор КРН можно предотвратить поляризацией не Фолько ниже определенного критического потенциала или диапазона потенциалов, но и несколько выше этого диапазона. А разрушение происходит внутри этого диапазона. В этих обстоятельствах, в соответствии с адсорбционной теорией, адсорбция разрушающих ионов на подвижных дефектах  [c.142]

Теория пассивности уже частично рассматривалась выше, и следует вновь обратиться к этому материалу (см. разд. 5.2). Контактирующий с металлической поверхностью пассиватор действует как деполяризатор, вызывая возникновение на имеющихся анодных участках поверхности высоких плотностей тока, превышающих значение критической плотности тока пассивации /крит-Пассиваторами могут служить только такие ионы, которые являются окислителями с термодинамической точки зрения (положительный окислительно-восстановительный потенциал) и одновременно легко восстанавливаются (катодный ток быстро возрастает с уменьшением потенциала — см. рис. 16.1). Поэтому трудновос-станавливаемые ионы SO или СЮ не являются пассиваторами для железа. Ионы NOj также не являются пассиваторами (в отличие от ионов NO2), потому что нитраты восстанавливаются с большим трудом, чем нитриты, и их восстановление идет столь медленно, что значения плотности тока не успевают превысить /крит-С этой точки зрения количество пассиватора, химически восстановленного при первоначальном контакте с металлом, должно быть по крайней мере эквивалентно количеству вещества в пассивирующей пленке, возникшей в результате такого восстановления. Как отмечалось выше, для формирования пассивирующей пленки на железе требуется количество электричества порядка 0,01 Кл/см (в расчете на видимую поверхность). Показано, что общее количество химически восстановленного хромата примерно эквивалентно этой величине, и, вероятно, это же справедливо и для других пассиваторов железа. Количество хромата, восстановленного в процессе пассивации, определялось по измерениям [4—6] остаточной радиоактивности на промытой поверхности железа после контакта с хроматным раствором, содержащим Сг. Принимая, в соответствии с результатами измерений [7], что весь восстановленный хромат (или бихромат) остается на поверхности металла в виде адсорбированного Сг + или гидратированного  [c.261]

Выражение (17) выведено Ланжелье [3], исходя из допущения, что выражения для К и К2 содержат концентрации (в моль/л), а не активности. Если — произведение растворимости, содержащее активности ионов, то где v — среднеионный коэффициент активности СаСОз. Для коэффициента активности Ланжелье с использованием теории Дебая—Хюккеля выведено выражение —Ig у = 0,52 х , где ц — ионная сила, а г — валентность. Следовательно, полученные титрованием концентрации С0 и НСО3 можно приравнять к соответствующим концентрациям этих ионов в выражениях для и F . Значения ЛГ и К. меняются не только с температурой, но и в зависимости от суммарного содержания растворенных солей, так как ионная сила раствора влияет на активность отдельных ионов.  [c.408]

Аналогично ведет себя АЬОз, и в обычном шлаковом растворе из трех компонентов СаО — AI2O3 — Si02 будем иметь различные двойные и тройные соли, наличие которых определяют по диаграммам плавкости. Для ионных растворов существуют две теории СИР и РИР.  [c.291]


Смотреть страницы где упоминается термин Растворы теория : [c.101]    [c.198]    [c.331]    [c.166]    [c.168]    [c.169]    [c.38]    [c.57]   
Задачи по термодинамике и статистической физике (1974) -- [ c.6 , c.6 , c.15 ]



ПОИСК



Вывод основных уравнений термодинамической теории бесконечно разбавленных растворов

Некоторые вопросы теории растворов электролитов

Некоторые представления статистической теории растворов

Основные начала теории растворов и сплавов

Регулярные растворы теория

Статистическая теория растворов

Теория коррозионных процессов в растворах электролитов

Теория коррозионных процессов в растворах электролитов и грунтах

Теория пассивности адсорбционная растворов газовая

Теория поляризации для разбавленных растворов, находящихся в стеклообразном состоянии

Термодинамическая теория бесконечно разбавленных растворов

Термодинамическая теория идеальных растворов

Термодинамическая теория истинных растворов

Термодинамическая теория неидеальных растворов

Термодинамические соотношения, используемые в теории растворов

Установившееся продольное течение (при растяжеСеточная теория полимерных растворов

Электронные теории ограниченных твердых растворов в сплавах на основе благородных металлов



© 2025 Mash-xxl.info Реклама на сайте