Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Потенциал коррозии

Если полностью запассивированный металл перестать поляризовать, выключая ток, то изменение потенциала металла во времени имеет характер, аналогичный представленному на рис. 217. Спад потенциала после выключения поляризационного тока соответствует разряду двойного электрического слоя, затем на кривой появляется горизонтальный участок, соответствующий растворению пассивной пленки (активации), а затем потенциал падает до значения стационарного потенциала коррозии активного железа.  [c.316]


Наконец, возможен случай, когда соизмеримы величины анодной и катодной поляризации (рис. 19, г). Крутизна наклона обеих кривых близка, потенциал коррозии Е- орр находится посредине между начальными потенциалами катода и анода Яд.  [c.51]

Критический потенциал коррозионного растрескивания — это такой потенциал, выше которого происходит адсорбция разрушающих ионов, а ниже — их десорбция. В принципе, он может быть как отрицательнее, так и положительнее коррозионного потенциала. Ингибирующие анионы, сами не вызывающие растрескивания, конкурируют с разрушающими ионами за адсорбционные места требуется приложить более высокий потенциал для достижения поверхностной концентрации разрушающих ионов, достаточной для адсорбции и растрескивания. Когда под воздействием ингибирующих ионов критический потенциал становится выше потенциала коррозии, растрескивание прекращается, потому что разрушающие ионы больше не могут адсорбироваться. Механизм конкурентной адсорбции сходен с ранее описанным механизмом питтингообразования, критический потенциал которого также сдвигается в положительном направлении в присутствии посторонних анионов (разд. 5.5.2).  [c.141]

Металл в пассивном состоянии практически не подвержен коррозии. хотя электродный потенциал его поверхности на сотни милливольт смещен в сторону положительных значений от потенциала коррозии. Это означает, что не выполняется уравнение анодной поляризационной кривой  [c.89]

При низких концентрациях кислорода скорость коррозии существенно уменьшается оптимальное содержание Oj составляет 4,0 Ю" %. При содержании кислорода в воде 8-10 мг/л потенциал коррозии алюминия увеличивается, но остается в пределах пассивной области. Однако при наличии в аэрированной воде хлор-ионов 0,01 моль/л и выше потенциал коррозии алюминия находится в активной области растворения металла.  [c.25]

Исследования показали, что при одном и том же количестве внедренных ионов палладия коррозионная стойкость титана заметно меняется в зависимости от характера распределения палладия в титане. Так, потенциал коррозии за первый час испытаний тем положительнее, чем больше палладия находится в непосредственной близости от поверхности. Результаты подтверждают, что потенциал коррозии определяется содержа-  [c.78]

Состав пигмента Содержание пигмента, % Потенциал коррозии, В Ток коррозии, мкА/см Пористость, 1/см  [c.126]

При наложении поляризации от внешнего источника тока или от создаваемого гальванического элемента из защищаемого металла и другого, более электроотрицательного металла повышение эффективности действия ингибиторов достигается вследствие смещения потенциала коррозии в отрицательном направлении при неизменном потенциале нулевого заряда. Смещение потенциала металла в отрицательном направлении при электрохимической катодной защите облегчает адсорбцию катионных органических веществ, при этом возрастают поверхностная концентрация таких ингибиторов и их ингибирующее действие.  [c.145]


В основу метода положена наблюдаемая во многих случаях вблизи потенциала коррозии линейная зависимость между величиной поляризующего тока и вызываемого им измерения потенциала  [c.109]

Для измерения поляризационного сопротивления могут быть использованы трехэлектродные датчики, в которых один из электродов является электродом сравнения. Такие датчики имеют то преимущество, что позволяют более точно определять потенциал рабочего электрода и могут работать в средах с большим сопротивлением (до 10 Ом см3), двухэлектродные. Двухэлектродные датчики могут эксплуатироваться в средах с удельным сопротивлением до 10 Ом-см, но их применение уменьшает ошибку, связанную с непостоянством потенциала коррозии во времени. Кроме того, применение двух одинаковых электродов приводит к более напряженной области линейной зависимости ток-потенциал, что позволяет применять большие поляризации при сохранении хорошей точности определения скорости коррозии. Для двухэлектродных систем меньше ошибки, связанные с несимметричностью и нелинейностью поляризационной кривой вблизи потенциала коррозии [24].  [c.111]

Расчеты показывают, что отклонение суммарной поляризационной кривой от индивидуальных кривых составляет менее 5 % при п = 3 1% при п = 4,6 и 0,1% при п = 6,9. Следовательно, для того чтобы корректно произвести расчет, должны быть известны токи поляризации по обе стороны от потенциала коррозии на 50-100 мВ.  [c.141]

В щелочных средах, содержащих хлорид-ион, при потенциалах выше потенциала коррозии на стали образуется толстый рыхлый слой магнетита, практически не обеспечивающий ee защиту. При более низких потенциалах образуется тонкий компактный магнетитовый слой и высокими противокоррозионными свойствами. Характер  [c.156]

Действительно, стационарный потенциал коррозии алюминия в растворах щелочей (в зависимости от его чистоты и от концентрации  [c.89]

Если для электродных реакций — анодной и катодной — известны поляризационные кривые и соотношение площадей электродов, то поляризационная диаграмма коррозии, построенная на основании этих данных, может дать наиболее исчерпывающую характеристику данного коррозионного процесса (рис. 20), На оси абсцисс здесь отложен корро-зиоииый ток / (величина, пропорциональная скорости коррозии), на оси ординат— отрицательные значения потенциалов электродов — Е. Начальное пололсенне потенциалов и Е соответствует разомкнутому состоянию электродов (бесконечно большое омическое сопротивление) точка пересечения анодной и катодной кривых S соответствует короткому замыканию анода II катода без всякого омического сопротивления. Очевидно, что короткому замыканию будет соответствовать максимальный коррозионный ток /шях- В этом случае эффективные потенциалы катода и анода сближаются до общего потенциала коррозии Ех.  [c.52]

Электрохимическая кинетика — это область науки, изучающая скорость реакции на границе электрода и контактирующей с ним жидкости. Электрохимическая кинетика расширила наше понимание механизма коррозии и позволила практически определять скорость коррозии. Интерпретация коррозионных процессов как суммы частных электродных реакций была разработана Вагнером и Траудом [1 ].В данной главе введены важные понятия электрохимической кинетики — потенциал коррозии (называемый также компромиссным стационарным потенциалом), плотность коррозионного тока, плотность тока обмена и тафелевская зависимость плотности тока от потенциала. В настоящей книге электрохимическая кинетика рассмотрена кратко и в основном  [c.46]

Гальванические элементы, действие которых вызывает коррозию металлов, аналогичны рассмотренному выше корроткозамкну-тому элементу. Измеряемый потенциал корродирующего металла— это компромиссный потенциал поляризованных анодов и катодов, известный как потенциал коррозии ор- Значение /max называется током коррозии /кор- Согласно закону Фарадея, скорость коррозии анода пропорциональна / ор, следовательно, скорость коррозии на единицу площади поверхности металла всегда можно выразить через плотность тока. Для цинка скорость коррозии  [c.48]


При построении / поляризационных диаграмм (например, рис. 4.7) по экспериментальным данным обычно сначала определяют потенциал коррозии ор в отсутствие внешнего тока. Далее анодно или катодно поляризуют рабочий электрод для построения одной из пунктирных линий на диаграмме. Затем процесс поляризации повторяют (с обратной полярностью внешнего тока) и строят вторую пунктирную линию. С помощью потенцио-стата поляризацию можно выполнить ступенчато (потенциостати-чески) или непрерывно (потенциодинамически). Получив зависимости Е от логарифма внешнего тока в областях положительнее и отрицательнее коррозионного потенциала, строят полную поляризационную диаграмму, как показано на рис. 4.7 для металлам.  [c.60]

Далее можно определить тафелевские наклоны (см. п. 4.4.2). Экстраполяцией анодного тафелевского участка ria обратимуй (равновесный) потенциал анода определяют плотность тока обмена /оа для реакции -j- гё М.. Значение /оа равно скорости реакций окисления и восстановления, выраженной в единицах плотности тока. Аналогично, экстраполяцией тафелевского участка на обратимый потенциал определяется /он — плотность тока обмена катодной реакции. Экстраполируя анодный или катодный тафелевские участки на потенциал коррозии к,ор> при котором /н = /а, ОПредеЛЯЮТ скорость коррозии /кор при условии, что Ла = Лк (отношение анодной и катодной площадей равно единице). Хотя последнее условие часто довольно точно выполняется, для более точной аппроксимации скорости коррозии требуются необходимые сведения о действительном отношении площадей катодной.и анодной реакции.  [c.61]

С 1970 г. уравнение Стерна—Гири вызывает все возрастающий интерес, в частности с точки зрения его уточнения и модифицирования для уменьшения ошибок в конкретных условиях [25—33]. Ошибки уравнения (3) становятся особенно значительными в системах, где потенциал коррозии приближается к одному из обратимых потенциалов (вне тафелевской области). Мэнсфелд и Оул-дэм [25] предложили систему уравнений, дающих меньшие ошибки, чем уравнение (3).  [c.67]

Для проверки применимости электрохимической теории коррозионного растрескивания был поставлен специальный эксперимент. Он заключался в измерении критического потенциала инициирования КРН нержавеющей стали 18-8 в кипящем при 130 °С растворе хлорида магния с добавками и без добавок ингибирующих анионов [22]. Анодная поляризация тем скорее вызывает растрескивание, чем положительнее потенциал катодная поляризация, наоборот, увеличивает время до растрескивания. При потенциале ниже критического значения —0,145 В сплав становится практически устойчив (рис. 7.5, а). Добавление различных солей (например, СНзСООНа) к раствору Mg lj повышает критический потенциал. Когда критический потенциал становится положительнее потенциала коррозии, КРН прекращается (рис. 7.5, Ь). Следовательно, если критический потенциал равен потенциалу анода разомкнутой цепи, характеризующему катодную защиту, при которой скорость коррозии равна нулю (см. разд. 4.10), потенциал коррозии не может быть ниже критического. Однако, ввиду того что критический потенциал может быть и ниже, и выше потенциала коррозии, он должен иметь другое объяснение.  [c.140]

Аналогичная кривая зависимости времени до растрескивания от потенциала для углеродистой стали в 35 % NaOH при 85— 125 °С (щелочная хрупкость) приведена на рис. 7.7. Так как потенциал коррозии равен —0,90 В, КРН не наступает в течение 200 ч и более, пока не появится растворенный О2 или другой окислитель типа РЬО, который сдвинет потенциал коррозии в максимально опасную область, около —0,71 В. В этом случае как анодная, так и катодная поляризация увеличивают время до разрушения.  [c.143]

Было показано, что латунь 70-30 склонна к КРН в 1 н. NajSO при pH = 2 [41 ], а латунь, содержащая 1 % Sn (адмиралтейская латунь), разрушается в 1 н. NajSOi при pH = l-f-12 и потенциалах положительнее потенциала коррозии [42]. Ион SO ", хотя и не особенно эффективен при инициировании КРН, становится агрессивным в области положительных потенциалов. И для мно-  [c.143]

Влияние несимметричности реакций фарадеевское выпрямление) наблюдается особенно часто при вызываемой переменным током коррозии пассивных металлов (в основном, по определению 1 в гл. 5). Показано, что нержавеющие стали корродируют под действием переменного тока [4], алюминий в разбавленных растворах соли разрушается при 15 А/м на 5 %, а при 100 А/м на 31 % по отношению к разрушениям, вызванным при 100 А/м постоянным током той же силы. Феллер и Рукерт [4] изучали воздействие наложения переменного тока (1 В, 54 Гц) на постоянный на никель в 1 и. H2SO4. Оказалось, что на потенцио-статических поляризационных кривых полностью исчезла пассивная область, а высокая плотность анодного тока сохранялась во всей области положительных потенциалов. Чин и Фу [5] отметили аналогичное поведение мягкой стали в 0,5т N82804 при pH = 7. Плотность пассивирующего тока возрастала с повышением плотности наложенного переменного тока, достигая при плотности тока 2000 А/м и частоте 60 Гц критического значения (отсутствие пассивной области). Они нашли также, что при плотности переменного тока 500 А/м потенциал коррозии снижался на несколько десятых вольта, одновременно в отрицательную сторону сдвигалась и область Фладе-потенциала, но  [c.209]

Увеличивает анодную пассивируемость сплавов добавление высокозарядных металлических или металлоидных ионов, которые повышают плотность тока катионных зарядов до необходимого для пассивации уровня. В качестве таких ионов можно использовать металлы Сг, W, V, Мп или металлоиды Si, С, В, Р, S и N. Повышают пассивируемость сталей также легированием небольшими добавками электрохимически положительных металлов (Rt, Pd, Ru, Re), облагораживающих потенциал коррозии металла положительнее потенциала полной пассивации и обеспечивающих достаточную для пассивации плотность катионного тока. Исследованиями последних лет было показано, что для достижения эффекта повышения коррозионной стойкости металлов достаточно обрабатывать только поверхностные слои металла.  [c.73]


Имплантация ионов Nb с энергией 30 кэВ при дозах 5 10 и 5 -10 ион/см в поверхность стали марки Х18Н9Т позволила получить легированный поверхностный сплав на глубине 20 нм. Увеличение концентрации ниобия не меняет относительного содержания железа, хрома и никеля в поверхностном слое стали, но существенно повышает его коррозионную стойкость в 20 %-ной серной кислоте после предварительной катодной обработки в течение 15 мин, смещая потенциал коррозии в положительную сторону. Однако максимальная концентрация ниобия в стали марки Х18Н9Т при этом ограничена 20 % в связи с распылением поверхности при дозе 5 10 ион/см .  [c.76]

При облучении титана ионами палладия с энергией 90 кэВ и дозой 10 ион/см происходит гаусовское распределение плотности по глубине приповерхностного слоя матрицы с максимальной концентрацией, достигающей 4 % на расстоянии 24 нм от поверхности. Характерное распределение катодной структурной составляющей в значительной степени определяет кинетику процесса коррозии титана в 10 %-ном растворе серной кислоты. По мере растворения титана и перемещения границы раздела металл—раствор, с одной стороны, в контакт с раствором вступают все более обогащенные Pd-слои, а с другой - возможно накопление катодных отложений непосредственно на поверхности титана, что приводит к увеличению концентрации палладия (до 20 %), усиливает анодную поляризацию анодной фазы и облегчает ее пассивирование (потенциал коррозии повьпиается на 0,8 В). Стационарная скорость растворения титана достигается менее чем за 1 ч с момента погружения в раствор и имеет величину в 1000 раз ниже скорости растворения чистого imana.  [c.77]

Потенциал коррозии титана с имплантированным палладием (373 К, 20 %-ный раствор H2SO4) через 1 ч после погружения в раствор положи-тельнее потенциала коррозии чистого титана. Положительный сдвиг за первый час коррозионных испытаний вызван селективным растворением титана и обогащением поверхностных слоев палладием. Затем происходили их медленное разблагораживание и последующая активация. Время до активации титана, содержащего палладий в количестве 0,5-1.10 атом/см, составляет 7-8 ч, а содержащего 2,5-6.10 атом/см -  [c.78]

Во всех случаях начальное значение потенциала было равно 40-80 мВ и затем отмечалось быстрое его смещение в положительную сторону. После прохождения максимального значения наблюдается паде -ние потенциала, причем достигаются значения, которые отрицательнее начальных величин. Падение потенциала, по-видимому, обусловлено протеканием катодной реакции восстановления нитрата до нитрита. Большое различие в поведении сталей А I я Л 2 свидетельствует о том, что химический состав не окаэьшает опреде 1я(сшего впияйия на зависимость потенциала коррозии-время в pa Mai-риваемых условиях.  [c.34]

Метод определения потенциала коррозии может быть использован для испытаний готовых изделий и конструкций в производственных условиях. Этот метод основал на нанесении капли раствора (смесь азотной и соляной кислот с добавкой хлорида трехвапентного железа) на поверхность  [c.18]

Метод потенштодинамической реактивации ипшострируется рис. 1, где обозначено 1 — потенциал, 2 — сила тока, и заключается в потенциоди— намической Поляризации от начального потенциала Од (вблизи потенциала коррозии) до некоторого потенциала в пассивной области и  [c.19]

Стационарный потенциал коррозии E o, расположен между равновесными потенциалами и охЕ, в данных условиях (для коррозий с водородной деполяризацией — между JE, и н ,), причем он всегда положнтельнее и отрицательнее хЕ, (или н г)-Если это различие достаточно велико, то для реакции с участием  [c.12]

В реальных условиях на реакцию ионизации — разряда ионов металла — накладывается какая-либо другая реакция, чаще всего выделение водорода или окисление кислорода. При реакции выделения водорода равновесный потенциал в выбранной среде отвечает величине н г- Применяя принцип независимого протекания электродных реакций и принцип суперпозиции поляризационных кривых [25], мы получим новую анодную кривую растворения металла , начинающуюся уже не от равновесного потенциала металла ,., а от его коррозионного потенциала Есог (кривая 2, рис. 17, а). Скорость коррозии (в отсутствие внешнего тока) будет равна при этом i or- Если на поверхности корродирующего металла будет присутствовать примесь более электроположительного металла, то равновесный потенциал водородного электрода не изменится, но скорость выделения водорода при тех же потенциалах будет выше (кривая 5, рис. 17, а), что приведет к сдвигу потенциала коррозии в положительную сторону ( ror) и к увеличению ее скорости до i or. Ситуация, однако, существенно меняется, если равновесный водородный потенциал положительнее, чем Е . Тогда введение металлов, на которых облегчается выделение водорода, приводит не к усилению, а к резкому замедлению коррозии, так как коррозионный потенциал окажется в этом случае в положительной области (рис. 17, б).  [c.50]


Смотреть страницы где упоминается термин Потенциал коррозии : [c.51]    [c.51]    [c.278]    [c.70]    [c.80]    [c.114]    [c.143]    [c.152]    [c.181]    [c.317]    [c.33]    [c.2]    [c.3]    [c.18]    [c.19]    [c.20]    [c.25]    [c.51]    [c.87]   
Коррозия и борьба с ней (1989) -- [ c.46 , c.48 ]

Коррозия и защита от коррозии (2002) -- [ c.85 , c.190 ]

Ингибиторы коррозии (1977) -- [ c.9 , c.12 ]



ПОИСК



Влияние нл-потенциала на скорость саморастворения металлов. Ингибиторы кислотной коррозии

Зависимость показателей коррозии от потенциала

Коррозия зависимость от потенциала электрода

Коррозия потенциалов между участками

Коррозия—Диаграммы Пурбе 1.7 Коррозионные диаграммы 1.8 — Необратимые потенциалы 1.7, 8 — Прямые и косвенные показатели коррозии 1.6 — Стандартный электродный

Коррозия—Диаграммы Пурбе 1.7 Коррозионные диаграммы 1.8 — Необратимые потенциалы 1.7, 8 — Прямые и косвенные показатели коррозии 1.6 — Стандартный электродный потенциал 1.6, 7 — атмосферная — Загрязненность воздуха 1.12 — Критическая влажность 1.12. — Образование фазовых и адсорбционных пленок

Материалы для расчета распределения потенциала и тока при электрохимической коррозии металлов

Метод расчета распределения потенциала и тока контактной коррозии под тонкой пленкой коррозионной среды

Построение кривых скорость коррозии — потенциал

Потенциал свободной» коррозии

Потенциал электрохимический коррозии

Потенциалы коррозии металлов и сплавов

Расчет распределения потенциала и тока при атмосферной, язвенной, щелевой и равномерной коррозии

Расчет распределения потенциала и тока при контактной коррозии металлов

Стационарные потенциалы и скорость коррозии

Титан потенциалы коррозии

ЭЛЕКТРОХИМИЧЕСКАЯ КОРРОЗИЯ МЕТАЛЛОВ Двойной электрический слой и электродные потенциалы

Электрохимические потенциалы и токи коррозии



© 2025 Mash-xxl.info Реклама на сайте