Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Ионных кристаллов поляризация

Если для расчета электронной тепловой поляризации пользоваться классическими представлениями, то результаты будут примерно такими же, как в случае ионной тепловой поляризации. Ясно, однако, что при описании движения электронов в кристаллах пренебрегать квантовыми эффектами нельзя. Необходимо учитывать, что эффективная масса электронов в кристалле сильно отличается от массы свободного электрона, что электроны в твердом теле подчиняются статистике Ферми —Дирака и т. д. Точные расчеты поляризуемости в этом случае достаточно сложны.  [c.288]


Ионная поляризация — упругое смещение противоположно заряженных ионов в узлах кристаллической решетки ионных кристаллов под действием внешнего поля. Это тоже быстрый вид поляризации, устанавливающийся за время порядка 10 —10 с. Поскольку в ионных кристаллах существует еще и электронная поляризация, а = аэ + ак (а — ионная поляризуемость) и такие диэлектрики отличаются большим значением е,, чем неполярные.  [c.544]

Ионная поляризация завершается за Ю" —10 с, поэтому Vr ионных кристаллов не зависит от частоты приложенного напряжения вплоть до 10 — 10 Гц.  [c.154]

Ионные кристаллы с пло т ной упаковкой молекул, соответствующие формам расположения частиц в кристаллах, характеризующиеся наибольшим числом частиц в единице объема кристалла, обладают электронной и ионной поляризацией, положительным температурным коэффициентом. Исключение составляет рутил (двуокись титана), имеющий отрицательный температурный коэффициент диэлектрической проницаемости, который объясняется электронной природой поляризации.  [c.12]

Ионные кристаллы с неплотной упаковкой частиц обладают электронной, ионной и ионно-релаксационной поляризациями, характеризуются невысоким значением диэлектрической проницаемости, но большим положительным температурным коэффициентом.  [c.12]

Твердые диэлектрики, представляющие собой ионные кристаллы с неплотной упаковкой частиц (например, электротехнический фарфор), в которых наблюдается, помимо электронной и ионной, также и ионно-релаксационная поляризация, характеризуются в большинстве случаев сравнительно невысоким значением диэлектрической проницаемости и большим положительным температурным коэффициентом ТКе, (рис. 1-7).  [c.26]

Причины неустойчивости кристаллич. решётки относительно смещений ионов, приводящей к спонтанной электрич. поляризации, сложны, т, к. связаны с учётом всех сил, действующих между ионами. Для ионных кристаллов особую роль играют кулоновские силы в частности, диполь-дипольные взаимодействия ионов могут давать отрицательный, дестабилизирующий вклад в суммарную потенциальную энергию кристаллич. ре-  [c.480]

Рис. 3,2. Модельные представления об элементарных механизмах упругой поляризации (смещение электронной оболочки атома при >0, смещение ионов в решетке ионного кристалла, изменение ориентации упруго связанных диполей во внешнем поле) Рис. 3,2. Модельные представления об элементарных механизмах <a href="/info/29037">упругой поляризации</a> (смещение <a href="/info/13887">электронной оболочки</a> атома при >0, смещение ионов в <a href="/info/172457">решетке ионного</a> кристалла, изменение ориентации упруго связанных диполей во внешнем поле)

ПОЛЯРИЗАЦИЯ и ПОГЛОЩЕНИЕ ИОННЫХ КРИСТАЛЛОВ  [c.82]

Поскольку всегда е(0) е(оо), то (Oto Wlo. В некоторых кристаллах, например типа алмаза, в приближении длинных волн (при й->0) (ото соьо. Это Означает, что е(0) е(оо), т. е. ИК-вклад (ионный) в поляризацию очень мал. Действительно, в таких важных для техники кристаллах полупроводников, обладающих структурой алмаза, как германий и кремний, ИК-поглощение очень невелико электромагнитная ветвь ш = пересекает ветви ТО и L0 прак-  [c.85]

Деформация или поляризация электронных оболочек в значительной степени зависит от величины и знака заряда окружающих частиц. В ионных кристаллах поляризуемость анионов обычно тем больше, чем больше радиус аниона. Поляризующее действие катиона может повыситься с уменьшением его радиуса н увеличением заряда. Для случая чисто гетерополярной связи можно принять симметричное распределение зарядов по отношению к ядру. Электроны катиона и аниона концентрируются преимущественно в сфере своих ионов. Поэтому электронная плотность в пространстве между противоположно заряженными ионами практически снижается  [c.23]

У ионных кристаллов е начинает зависеть от частоты в инфракрасном диапазоне (10 —10 Гц). В видимой области спектра ионы не успевают смещаться вслед за изменением поля и ионная поляризация отсутствует. Значение е в оптическом диапазоне (при частоте выше 3-10 Гц) падает до = п .  [c.117]

Ионные кристаллы с плотной упаковкой частиц обладают электронной и ионной поляризацией. Величина е их имеет широкий диапазон положительных значений. Исключение составляет рутил (НОз), имеющий отрицательный ТКе, который объясняется электронной природой поляризации.  [c.75]

Твердые диэлектрики, представляющие собой ионные кристаллы с неплотной упаковкой частиц, в которых имеется электронная, ионная и ионно-релаксационная поляризация, характеризуются большим положительным температурным коэффициентом е (кордиерит, фарфор).  [c.75]

Твердые диэлектрики, представляющие собой ионные кристаллы с плотной упаковкой частиц, обладают электронной и ионной поляризациями и имеют величину диэлектрической проницаемости, лежащую в широких пределах. Температурный коэффициент диэлектрической проницаемости ионных кристаллов в большинстве случаев имеет положительное значение вследствие того, что при повышении температуры наблюдается не только уменьшение плотности вещества, но и возрастание поляризуемости ионов, причем влияние этого фактора  [c.49]

Ряд ионных кристаллов, обладая спонтанной поляризацией, не обладает в то же время постоянным электрическим моментом. Такие кристаллы можно рассматривать как совокупность двух вставленных одна в другую подрешеток, поляризованных в противоположных направлениях. Они получили название антсисегне-  [c.301]

Диэлектрики, в силу того, что свободных носителей заряда в них мало, состоят по сути из связанных заряженных частиц положительно заряженных ядер и обращающихся вокруг них электронов в атомах, молекулах и ионах, а также упруго связанных разноименных ионов, )асположенных в узлах решетки ионных кристаллов. Толяризация диэлектриков — упорядоченное смещение связанных зарядов под действием внешнего электрического поля (положительные заряды смещаются по направлению вектора напряженности поля , а отрицательные— против него). Смещение / невелико и прекращается, когда сила электрического поля, вызывающая движение зарядов относительно друг друга, уравновешивается силой взаимодействия между ними. В результате поляризации каждая молекула или иная частица диэлектрика становится электрическим диполем — системой двух связанных одинаковых по значению и противоположных по знаку зарядов q, Кл, расположенных на расстоянии I, м, друг от друга, причем q — это либо заряд иона в узле кристаллической решетки, либо эквивалентный заряд системы всех положительных или системы всех отрицательных зарядов поляризующейся частицы. Считают, что в результате процесса поляризации в частице индуцируется электрический момент p=ql, Кл-м. У линейных диэлектриков (их большинство) между индуцируемым моментом и напряженностью электрического поля , действующей на частицу, существует прямая пропорциональность р = аЕ. Коэффициент пропорциональности а, Ф-м , называют поляризуемостью данной частицы. Количественно интенсивность поляризации определяется поляризованно-стью Р диэлектрика, которая равна сумме индуцированных электрических моментов всех N поляризованных частиц, находящихся в единице объема вещества  [c.543]


Ионная поляршация-смещеияе друг относительно друга разноименно заряженных ионов в веществах с ионными связями. На рис. 4.3,6 показана поляризация элементарной ячейки ионного кристалла типа МаС1. Центры положительных и отрицательных зарядов д ионов ячейки, совпадающие до приложения электрического поля, под действием поля раздвигаются на некоторое расстояние х в результате смещения разноименно заряженных ионов в противоположных направлениях, вследствие чего элементарная ячейка приобретает индуцированный электрический момент Ри=Я - Ионная поляризация устанавливается также за малое, но все же большее, чем электронная поляризация, время - порядка с.  [c.92]

У некоторых кристаллических веществ, например у щелочно-галоидных кристаллов и кристаллов, содержащих ноны титана, висмута, стронция, существует ионная релаксационная поляризация. Появление слабо связанных ионон II электронов часто обусловлено дефектами кристаллической решетки, такими, как примесные ионы, пустые узлы и межузельные ионы, дислокации. В аморфных телах слабо связанные ионы возникают из-за так называемой неплотной упаковки частиц. Такие ионы существуют в стеклах.  [c.147]

Ионная упругая поляризация. Она происходит в кристаллических диэлектриках, построенных из положительных и отрицательных ионов, — в галоидно-щелочных кристаллах, слюдах, керамиках. В электрическом поле в таких диэлектриках происходит смещение электронных оболочек в каждом ионе — электронная поляризация. Кроме того, упруго смещаются друг относительно друга подрешеткииз положительных и отрицательных ионов (рис. 5.12,6), т. е. происходит упругая ионная поляризация. Это смещение приводит к появлению дополнительного электрического момента увеличивающего поляризованность, а следовательно, и диэлектрическую проницаемость на Еги. Таким образом, диэлектрическая проницаемость ионного кристалла равна = ег . + ги, где Еги зависит от физической природы ионов, сил их взаимодействия и строения кристаллической решетки.  [c.154]

Процессы миграционной поляризации одни из самых медлен ных. Время на их завершение изменяется в пределах 1—10" с Спонтанная (самопроизвольная) поляризация. Доменная полярн эация. Сегнетоэлектрики. Характерные для сегнетоэлектриков свой ства впервые были обнаружены у сегнетовой соли. В дальней шем сегнетоэлектриками стали называть вещества, свойства кото рых подобны свойствам сегнетовой соли. В сегнетоэлектриках даже в отсутствие электрического поля наблюдается самопроизвольное смещение частиц — ионов в ионных кристаллах или полярных радикалов молекул, которое приводит к несовпадению центров положительного и отрицательного зарядов в объеме диэлектрика, т.е. поляризации. Такая поляризация называется спонтанной (самопроизвольной). В результате в диэлектрике образуются области-домены, где все частицы, обусловливающие самопроизвольную поляризацию, смещены в одном направлении. В этом направлении ориентирован и вектор спонтанной поляризованности Р, домена. В со-  [c.157]

Твердые диэлектрики, представляющие собой ионные кристаллы с плотной упаковкой частиц, обладаьзт электронной и ионной поляризациями и имеют диэлектрическую проницаемость, изменяющуюся в широких пределах. Температурный коэффициент диэлектрической проницаемости ионных кристаллов в большинстве случаев положителен. Примером одного из таких диэлектриков служит КС1 (рис. 1-6).  [c.26]

В ионных кристаллах, элементарная ячейка к-рых состоит из ионов противоположных знаков, онтич. колебания сопровождаются колебаниями злектрич. поляризации и потому связаны с эл.-магп. колебаниями в ИК-области частот. Название оптич. колебания связано с резонансным поглощением эл.-магн. излучения соответствующей частоты.  [c.618]

Механизмы поляризации веществ различны и зависят от характера химической связи (рис. 31). Например, в ионных кристаллах (Na l и др.) поляризация является результатом деформации электронных оболочек отдельных ионов (электронная поляризация) и сдвига ионов относительно друг друга (ионная поляризация). В кристаллах с ковалентной связью (например, в алмазе) поляризация обусловлена главным образом смещением электронов, осуществляющих химическую связь. В полярных диэлектриках (например, в твердом HjS), в которых молекулы или радикалы представляют собой  [c.92]

С электронной поляризацией, обусловленной тепловым движением, связан довольно широкий круг процессов, происходящих в твердых диэлектриках фотодиэлектрический эффект в кристаллах люминесцирующих широкозонных полупроводников диэлектрическая релаксация, обусловленная наличием центров окрашивания в ионных кристаллах, диэлектрическая релаксация электронов, захваченны.х донорны.ми центрами в оксидных полупроводниках наконец, существенное повышение на низких частотах диэлектрической проницаемости в поликристаллических веществах типа рутила, перовскита или стронций-висмут титаната (СВТ). Последний из перечисленных диэлектриков находит важное техническое применение.  [c.72]

Ионная тепловая поляризация.. Механизм этой поляризации детально описан в монографии Сканави [1]. Ионная тепловая поляризация воз.можна только в твердых диэлектриках и преобладает в веществах с выраженной нерегулярностью структуры в стеклах, ситаллах и диэлектрической керамике. Концентрация дефектов кристаллической структуры в этих диэлектриках чрезвычайно велика в керамике и ситаллах—на границах кристаллов, в стеклах же вообще нарушается дальний порядок в расположении атомов. Однако тепловая ионная поляризация возможна и в монокристаллах — в окрестности структурных дефектов.  [c.72]


Инфракрасная поляризация, отличающая ионные кристаллы, обусловлена взаимным смещением в электромагнитном поле катионной и анионной подреше-ток (см. рис. 3.12,в). Это обусловливает более низкочастотный, чем оптический, дополнительный поляризационный вклад в коэффициент преломления электромагнитной волны закон дисперсии на всех частотах, меньших ИК-диапазона, имеет вид (о = ряда ионных кристаллов существенно превы-  [c.85]

Поляризация и поглощение ионных кристаллов хорошо описываются теорией фононов — упругих колебаний кристаллической решетки. Фононы являются ква-зичастицами обладают квазиимпульсом h k, энергией h ш и скоростью ш/й. Распределение фононов описывается статистикой Бозе. В зависимости от направления упругих смещений в волне фононы разделяются на продольные и поперечные. Если элементарная ячейка кристалла участвует в упругих колебаниях как единое целое (смещается центр масс),. фононы называются акустическими.  [c.85]

Соотношение Лиддейна — Сакса — Теллера. Поляризация ионных кристаллов, обусловливающая специфическую зависимость диэлектрической проницаемости от частоты и температуры, хорошо описывается моделью Борна, основанной на динамических свойствах кристаллической решетки. Динамическая модель колебаний решетки позволяет не только рассчитать е, но н установить соотношение  [c.85]

Диэлектрическая проницаемость связана с тремя эффектами. Электронная поляризация — смещение электронных орбит происходит за время т 10" сек и дает основной вклад в е в случае симметричных неполярных молекул. Ионная поляризация (у ионных кристаллов) — смещение ионов, составляющих остов кристалла или молекулы т ss 10 сек. Дипольная или ориентационная поляризация связана с поворотом в электрическом поле молекул, имеющих дипольный момент. Эта поляризация приводит к гораздо большим значениям е, однако Bpejviя, необходимое для ориентации молекул, составляет 10 —10"" сек и сильно зависит от свойств, температуры и агрегатного состояния вещества. У веществ, молекулы которых обладают дипольным моментом, е может сильно зависеть от частоты.  [c.320]

Ионная поляризация — смещение друг относительно друга разноименно заряженных ионов в веществах с ионными связями. На рис. 15.3, б показана поляризация элементарной ячейки ионного кристалла типа МаС1, Центры положительных и отрицательных зарядов д ионов ячейки, совпадающие до приложения электрического поля, под действием поля раздвигаются на некоторое расстояние х в резуль-  [c.115]

Твердые диэлектрики, представляющие собой ионные кристаллы с плотной упаковкой частиц, обладают электронной и ионной поляризациями и имеют величину диэлектрической проницаемости, лежащую в широких пределах. Температурный коэффициент диэлектрической проницаемости ионных кристаллов в большинстве случаев имеет положительное значение вследствие того, что при повышении температуры наблюдается не только уменьшение плотности вещества, но и возрастание поляризуемости ионов, причем влияние этого фактора сказывается на величине е сильнее, чем изменение плотности. Исключением являются кристаллы, содержащие ионы титана — рутил (Т10г)  [c.37]


Смотреть страницы где упоминается термин Ионных кристаллов поляризация : [c.71]    [c.273]    [c.32]    [c.36]    [c.209]    [c.696]    [c.697]    [c.374]    [c.404]    [c.22]    [c.73]    [c.189]    [c.45]    [c.89]    [c.89]    [c.122]    [c.14]   
Диэлектрики Основные свойства и применения в электронике (1989) -- [ c.82 ]



ПОИСК



Иониты

Ионная поляризация

Ионных кристаллов поляризация потери

Ионных кристаллов поляризация пробой

Ионов

Кристаллы ионные

По ионная

Поляризация

Поляризация и поглощение ионных кристаллов



© 2025 Mash-xxl.info Реклама на сайте