Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Потенциал критический

Раздел 3 — Неравновесные состояния условия равновесия и их применение (возрастание энтропии при необратимом адиабатическом переходе из одного равновесного состояния в другое определение энтропии неравновесных состояний определение свободной энергии для равновесного состояния изменение энтропии при необратимых процессах изменение свободной энергии при необратимых процессах условия равновесия системы замечания, связанные с уточнением физического смысла законов термодинамики фаза условие устойчивости системы, состоящей из одной фазы фазовые превращения фазовые превращения первого рода уравнение Клапейрона — Клаузиуса равновесие трех фаз поверхность термодинамического потенциала критическая точка поверхностная энергия и поверхностное натяжение роль поверхностного натяжения при образовании  [c.364]


Нормальное состояние изоляции и защиты означает, что изоляционное покрытие трубопровода не повреждено, а катодная защита эффективна, т.е. обеспечивает в контролируемом месте наличие защитного потенциала критическое же (или опасное) - что происходит потеря (коррозионное растворение) металла, а катодная защита неэффективна, т.е. безопасность трубы более не обеспечивается.  [c.103]

Ввиду особой важности явления глава Влияние механических напряжений дополнена новым разделом по механике разрушения. Детально рассмотрено понятие критического потенциала коррозионного растрескивания под напряжением.  [c.14]

По этой же причине коррозионную устойчивость многих металлов и сплавов (например, Сг—Fe-сплавы и H SOJ можно значительно повысить, приложив анодный ток, изначально равный или превышающий критический ток пассивации. Потенциал металла сдвигается в пассивную область (рис. 5.1), и конечная плот-  [c.78]

Б.6.3 КРИТИЧЕСКИЙ ПОТЕНЦИАЛ ПИТТИНГООБРАЗОВАНИЯ  [c.85]

Согласно оксидно-пленочной теории, критический потенциал — это. потенциал, необходимый для создания в пассивирующей пленке электростатического поля, способного стимулировать проникновение ионов С1 к поверхности металла [40]. Другие анионы также могут проникать в оксид, в зависимости от их размера и заряда. Примеси этих анионов улучшают ионную проводимость и благоприятствуют росту оксида. В конечном счете оксид или разрушается из-за конденсации мигрирующих вакансий, или его катионы растворяются в электролите на границе раздела сред в обоих случаях начинается питтинг. Предшествующий питтингообразованию индукционный период зависит от времени, которое требуется С1 для проникновения через оксидную пленку.  [c.87]

При потенциале ниже критического ионы С1 не могут заместить адсорбированный кислород до тех пор, пока пассивная пленка остается неповрежденной, поэтому питтинг не развивается. Если бы пассивность была нарушена другим путем, например снижением концентрации кислорода или деполяризатора в щелях (щелевая коррозия) или локальной катодной поляризацией,- пит-тинг мог бы тогда возникнуть независимо от того, выше или ниже критического значения находится потенциал основной поверхности. Но в условиях однородной пассивности на всей поверхности металла, чтобы организовать катодную защиту для предотвращения питтингообразования, требуется лишь сдвинуть потенциал металла ниже критического значения. Это противоречит обычному правилу применения катодной защиты, согласно которому необходима более глубокая поляризация металла — до значения анодного потенциала при разомкнутой цепи.  [c.88]


Некоторые металлы, например хром, на воздухе пассивны и остаются блестящими годами, в отличие от железа или меди, которые быстро корродируют и тускнеют в короткое время. Показано, что пассивные свойства хрома присущи и железохромистым сплавам при содержании Сг — 12 % и более (такие сплавы известны как нержавеющие стали). Типичные зависимости скорости коррозии, коррозионного потенциала и критической плотности тока от содержания хрома показаны на рис. 5.9—5.11. Заметим, что на рис. 5.11 /крит пассивации Сг — Fe-сплавов при pH = 7 достигает минимального значения (около 2 мкА/см ) при содержании Сг 12 % . Это значение так мало, что коррозионные токи  [c.88]

Критический потенциал коррозионного растрескивания — это такой потенциал, выше которого происходит адсорбция разрушающих ионов, а ниже — их десорбция. В принципе, он может быть как отрицательнее, так и положительнее коррозионного потенциала. Ингибирующие анионы, сами не вызывающие растрескивания, конкурируют с разрушающими ионами за адсорбционные места требуется приложить более высокий потенциал для достижения поверхностной концентрации разрушающих ионов, достаточной для адсорбции и растрескивания. Когда под воздействием ингибирующих ионов критический потенциал становится выше потенциала коррозии, растрескивание прекращается, потому что разрушающие ионы больше не могут адсорбироваться. Механизм конкурентной адсорбции сходен с ранее описанным механизмом питтингообразования, критический потенциал которого также сдвигается в положительном направлении в присутствии посторонних анионов (разд. 5.5.2).  [c.141]

Ингибирующее действие нитритов при температурах эксплуатации котлов, вероятно, связано со сдвигом коррозионного потенциала стали до значений, лежащих вне области критических потенциалов, при которых наблюдается КРН.  [c.291]

Коррозия в щелях подчиняется тем же закономерностям, что и питтинговая коррозия. Чем выше электрическая проводимость электролита и больше площадь катодной поверхности вне щели, тем выше скорость растворения в щели, которая является анодом. Инициация щелевой коррозии, однако, не связана с достижением критического потенциала питтингообразования. Она зависит только от факторов, влияющих на нарушение пассивности внутри щели. Депассивация может произойти, например, из-за уменьшения концентрации в щели растворенного кислорода вследствие протекания незначительной общей коррозии сплава. Тогда образуется элемент дифференциальной аэрации, и в щели накапливаются кислые продукты коррозии (в результате анодной реакции). Такие изменения в составе электролита существенно способствуют  [c.314]

Катодная защита поляризацией до потенциала ниже критического потенциала питтингообразования. Для этого можно применять приложенный извне ток, а также в хорошо проводящих средах (например, морской воде) — защиту цинковыми, железными или алюминиевыми протекторами [44]. Аустенитные нержавеющие стали, применяемые для сварки малоуглеродистой листовой стали, а также гребные винты из стали 18-8, установленные на судах из черной стали, не подвергаются питтингу.  [c.315]

Катодная защита. Катодная защита за счет сдвига потенциала ниже критического обеспечивается или с помощью наложенного извне тока или применением покрытия протекторного действия (например, цинкового).  [c.339]

ЛВ —область активного растворения металла ВС — об-ласть активно-пассивного состояния СО — область устоИ-ЧИ1Ю10 пассивного состояния ОЕ — область перепасси-вации Ех — потенциал начала пассивации Ег — потенциал начала активации Ез — потенциал перепассивации 1 — критический ток пассивации з — ток полной пассивации  [c.343]

Успехи, достигнутые в коррозионной науке и технике машиностроения с момента выхода первого издания, требуют обновления большинства глав настояш,ей книги. Детально рассмотрены введенное недавно понятие критического потенциала ииттингообразования и его применение на практике. Соответствующее место отводится также критическому потенциалу коррозионного растрескивания под напряжением и более подробному обзору различных подходов к изучению механизма этого вида коррозии. Раздел по коррозионной усталости написан о учетом новых данных и их интерпретации. В главу по пассивности включены результаты новых интересных экспериментов, проведенных в ряде лабораторий. Освещение вопросов межкристаллитной коррозии несенсибилизированных нержавеющих сталей и сплавов представляет интерес для ядерной энергетики. Книга включает лишь краткое описание диаграмм Пурбе в связи с тем, что подробный атлас таких диаграмм был опубликован профессором Пурбе в 1966 г.  [c.13]


Согласно адсорбционной теории, критический потенциал объясняют с точки зрения конкуренции адсорбции С1" и кислорода на пассивной пленке [32, 37]. Металл имеет большее сродство к кислороду, чем к ионам С1 , но если значение потенциала повышается, концентрация С1 возрастает, так что в конце концов ионы С1 могут заместить адсорбированный кислород. Наблюдаемый индукционный период — это время, которое требуется для успешной конкурирующей адсорбции на благоприятных участках поверхности металла, а также время проникновения С1" в пассивную пленку. Как было показано выше, в отличие от кислорода, адсорбция ионов С1" снижает анодное перенапряжение для растворения металла, чем объясняется более высокая скорость коррозии на участках, где произошло замещение. Другие анионы (например, NO3 или SO ), не разрушающие пассивную пленку и не вызывающие питттинг, конкурируют с С1" за места на пассивной поверхности. В связи с этим необходимо сдвигать потенциал до еще более высоких значений, чтобы увеличить концен-  [c.87]

Эта модель была проверена на медно-никелеЁых сплавах, которые легировали небольшими количествами других непереходных Y или переходных Z элементов. При этом отмечали критический состав, при котором / рит и /пас совпадали или исчезал Фладе-потенциал. Добавки непереходных металлов с валентностью >1 должны были бы сдвигать критический состав в сторону увеличения содержания никеля, тогда как добавки переходных металлов имели бы противоположный эффект. Например, один двухвалентный атом цинка или трехвалентный атом алюминия были бы эквивалентны в твердом растворе двум или трем атомам меди, соответственно. Это было подтверждено экспериментально [53, 54]. Найдены соотношения  [c.95]

Для проверки применимости электрохимической теории коррозионного растрескивания был поставлен специальный эксперимент. Он заключался в измерении критического потенциала инициирования КРН нержавеющей стали 18-8 в кипящем при 130 °С растворе хлорида магния с добавками и без добавок ингибирующих анионов [22]. Анодная поляризация тем скорее вызывает растрескивание, чем положительнее потенциал катодная поляризация, наоборот, увеличивает время до растрескивания. При потенциале ниже критического значения —0,145 В сплав становится практически устойчив (рис. 7.5, а). Добавление различных солей (например, СНзСООНа) к раствору Mg lj повышает критический потенциал. Когда критический потенциал становится положительнее потенциала коррозии, КРН прекращается (рис. 7.5, Ь). Следовательно, если критический потенциал равен потенциалу анода разомкнутой цепи, характеризующему катодную защиту, при которой скорость коррозии равна нулю (см. разд. 4.10), потенциал коррозии не может быть ниже критического. Однако, ввиду того что критический потенциал может быть и ниже, и выше потенциала коррозии, он должен иметь другое объяснение.  [c.140]

В табл. 7.3 приведены значения критических потенциалов различных металлов и растворов, выше которых начинается КРН. На нержавеющей стали 18-8 в Mg la при 130 °С трещина глубиной не более 0,013—0,025 см прекращает развитие при потенциале на 5 мВ ниже критического 38]. Для остановки роста более глубоких трещин необходим более отрицательный потенциал —это объясняется экранирующим действием металла в трещине и изменением состава раствора вследствие накопления в трещине продуктов анодного растворения. Другими словами, условия, необходимые для возникновения трещины и для ее роста, одинаковы.  [c.142]

При некоторых сочетаниях металл—раствор КРН можно предотвратить поляризацией не Фолько ниже определенного критического потенциала или диапазона потенциалов, но и несколько выше этого диапазона. А разрушение происходит внутри этого диапазона. В этих обстоятельствах, в соответствии с адсорбционной теорией, адсорбция разрушающих ионов на подвижных дефектах  [c.142]

Иногда. считают, что КРН высокопрочных сталей с твердостью Яр > 40 (см. табл. 7.1) в воде или влажном воздухе вызвано водородом, образующимся в результате реакции НаО с железом. Однако зависимость времени до разрушения от приложенного потенциала (рис. 7.13) показывает, что в кипящем 3 % растворе Na l растрескивание происходит только при потенциалах выше критического —0,4 0,02 В и ниже —1,1 В внутри этой области потенциалов металл сохраняет устойчивость к растрескиванию. По некоторым причинам разрушение при высоких потенциалах легче объяснить КРН, вызванным, например, адсорбирующейся водой, разрушающей металлические связи, тогда как разрушение  [c.151]

Влияние несимметричности реакций фарадеевское выпрямление) наблюдается особенно часто при вызываемой переменным током коррозии пассивных металлов (в основном, по определению 1 в гл. 5). Показано, что нержавеющие стали корродируют под действием переменного тока [4], алюминий в разбавленных растворах соли разрушается при 15 А/м на 5 %, а при 100 А/м на 31 % по отношению к разрушениям, вызванным при 100 А/м постоянным током той же силы. Феллер и Рукерт [4] изучали воздействие наложения переменного тока (1 В, 54 Гц) на постоянный на никель в 1 и. H2SO4. Оказалось, что на потенцио-статических поляризационных кривых полностью исчезла пассивная область, а высокая плотность анодного тока сохранялась во всей области положительных потенциалов. Чин и Фу [5] отметили аналогичное поведение мягкой стали в 0,5т N82804 при pH = 7. Плотность пассивирующего тока возрастала с повышением плотности наложенного переменного тока, достигая при плотности тока 2000 А/м и частоте 60 Гц критического значения (отсутствие пассивной области). Они нашли также, что при плотности переменного тока 500 А/м потенциал коррозии снижался на несколько десятых вольта, одновременно в отрицательную сторону сдвигалась и область Фладе-потенциала, но  [c.209]


В случае амфотерных металлов (например, алюминия, цинка, свинца, олова) избыток щелочи, образующийся на поверхности перезащищенных конструкций, приводит к увеличению агрессивности среды, а не к подавлению коррозии. На примере свинца было показано [21 ], что катодная защита достижима и в щелочной области pH, но критический потенциал полной защиты (см. ниже) сдвигается в область более отрицательных значений. Алюминий может быть катодно защищен от питтинговой коррозии, если обеспечить его контакт с цинком [221, который выполняет роль протектора. Контакт с магнием может привести к перезащите с последующим разрушением алюминия.  [c.224]

Для пассивных металлов критерий защиты иной. Поскольку такие пассивные металлы, как алюминий или нержавеющая сталь, при низких скоростях коррозии растворяются равномерно, а при высоких — с образованием питтингов, их катодная защита обеспечивается уже при поляризации до значений более отрицательных, чем критический потенциал питтингообразования (см. разд. 5.5.2). Последний лежит в пассивной области, и его значение тем ниже, чем выше концентрация С1"-ионов в 3 % растворе Na l его значение для алюминия составляет —0,45 В.  [c.227]

Следовательно, железо, имеющее в морской воде коррозионный потенциал около —0,4 В, непригодно для использования в качестве протектора для катодно защищаемого алюминия, в отличие от цинка, который имеет более подходящий коррозионный потенциал, близкий —0,8 В. Для нержавеющей стали 18-8 критический потенциал в 3 % растворе Na l равен 0,21 В, для никеля — около 0,23 В. Следовательно, контакт этих металлов с имеющими соответствующую площадь электродами из железа или цинка может обеспечить им в морской воде эффективную катодную защиту, предупреждающую питтинговую коррозию. Элементы создаваемых конструкций (например, кораблей и шельфовых нефтедобывающих платформ) иногда специально проектируют таким образом, чтобы можно было успешно использовать гальванические пары такого рода.  [c.227]

Ввиду того, что пассивность. железа и нержавеющих сталей нарушается галогенид-ионами, невозможна анодная защита этих металлов в соляной кислоте и кислых растворах хлоридов, где плотность тока в пассивной области очень велика. Кроме того, если электролит загрязнен ионами С1 , существует опасность образования питтингов даже при достаточно низкой плотности пассивного тока. В последнем случае, однако, достаточно поддерживать потенциал ниже критического потенциала питтинго-образования для данного смешанного электролита . Титан, который имеет высокий положительный критический потенциал питтингообразования в широком интервале концентраций С1 -иона и температур, пассивен в присутствии С1 -ионов (низкая /пасс) и может быть анодно защищен даже в растворах соляной кислоты.  [c.229]

Кадмиевые покрытия получают почти исключительно электро-осаждением. Разница в потенциалах между кадмием и железом не столь велика, как между цинком и железом, следовательно степень катодной защиты стали покровным слоем кадмия с ростом размера дeфeкtoв в покрытии падает быстрее. Меньшая разность потенциалов обеспечивает важное преимущество кадмиевых покрытий применительно к защите высокопрочных сталей (твердость Яр > 40, см. разд. 7.4.1). Если поддерживать потенциал ниже значения критического потенциала коррозионного растрескивания под напряжением (КРН), но не опускаясь в область еще более отрицательных значений, отвечающую водородному растрескиванию, то кадмиевые покрытия надежнее защищают сталь от растрескивания во влажной атмосфере, чем цинковые. Кадмий дороже цинка, но он дольше сохраняет сильный металлический блеск, обеспечивает лучший электрический контакт,, легче поддается пайке и поэтому нашел использование в электронной промышленности. Кроме того, он устойчивее к воздействию водяного конденсата и солевых брызг. Однако, с другой стороны, кадмиевые покрытия не столь устойчивы в атмосферных условиях, как цинковые покрытия такой же толщины.  [c.238]

Теория пассивности уже частично рассматривалась выше, и следует вновь обратиться к этому материалу (см. разд. 5.2). Контактирующий с металлической поверхностью пассиватор действует как деполяризатор, вызывая возникновение на имеющихся анодных участках поверхности высоких плотностей тока, превышающих значение критической плотности тока пассивации /крит-Пассиваторами могут служить только такие ионы, которые являются окислителями с термодинамической точки зрения (положительный окислительно-восстановительный потенциал) и одновременно легко восстанавливаются (катодный ток быстро возрастает с уменьшением потенциала — см. рис. 16.1). Поэтому трудновос-станавливаемые ионы SO или СЮ не являются пассиваторами для железа. Ионы NOj также не являются пассиваторами (в отличие от ионов NO2), потому что нитраты восстанавливаются с большим трудом, чем нитриты, и их восстановление идет столь медленно, что значения плотности тока не успевают превысить /крит-С этой точки зрения количество пассиватора, химически восстановленного при первоначальном контакте с металлом, должно быть по крайней мере эквивалентно количеству вещества в пассивирующей пленке, возникшей в результате такого восстановления. Как отмечалось выше, для формирования пассивирующей пленки на железе требуется количество электричества порядка 0,01 Кл/см (в расчете на видимую поверхность). Показано, что общее количество химически восстановленного хромата примерно эквивалентно этой величине, и, вероятно, это же справедливо и для других пассиваторов железа. Количество хромата, восстановленного в процессе пассивации, определялось по измерениям [4—6] остаточной радиоактивности на промытой поверхности железа после контакта с хроматным раствором, содержащим Сг. Принимая, в соответствии с результатами измерений [7], что весь восстановленный хромат (или бихромат) остается на поверхности металла в виде адсорбированного Сг + или гидратированного  [c.261]

Для достижения наилучшего ингибирующего эффекта концентрация пассиватора должна превышать определенное критическое значение. Ниже этого значения пассиваторы ведут себя как активные деполяризаторы и увеличивают скорость коррозии на локализованных участках поверхности (питтинг). Более низкая концентрация пассиватора соответствует бЬлее отрицательным значениям окислительно-восстановительного потенциала, и вследствие этого катодная поляризационная кривая пересекает анодную кривую в активной, а не в пассивной области (см. рис. 16.1).  [c.262]

Для предотвращения щелевой коррозии с успехом используют катодную защиту. С ее помощью прилегающий к щели сплав поляризуют до стационарного потенциала активной (не запассиви-рованной) поверхности сплава внутри щели. Это требование выглядит более жестко по сравнению с мерами, необходимыми для предупреждения п иттинга, когда достаточно заполяризовать сплав до потенциала ниже критического потенциала питтингообразова-ния.  [c.315]

Аустенитные нержавеющие стали, содержащие более 45 % Ni, стойки к КРН в кипящем растворе Mg lj, а также, по-видимому, и в других хлоридных растворах (рис. 18.8) [61 ]. Эделеану и Сноуден отметили [48], что нержавеющие стали с высоким содержанием никеля более устойчивы к растрескиванию в щелочах. Увеличение содержания никеля в аустенитных нержавеющих сталях приводит к сдвигу в положительную сторону критического потенциала КРН в растворе Mg la, причем этот сдвиг значительнее сдвига соответствующего коррозионного потенциала. Вследствие этого повышается стойкость сплава [62]. Когда содержание никеля в сплаве достигает и превышает 45 %, его стойкость к КРН перестает зависеть от окислительно-восстановительного потенциала среды, а более важную роль начинают играть факторы, определяемые не средой, а структурой сплава, такие как вредное влияние дислокаций или уменьшение растворимости азота внедрения.  [c.320]


Катодная защита. Критический потенциал нержавеющей стали 18-8 в растворе Mg lg при 130 °С равен —0,128 В. Контакт напряженной стали 18-8 с никелевым электродом ( кор = =0,18 В), имеющим небольшую площадь поверхности, предотвращает растрескивание в этой среде и (при использовании пористого никелевого покрытия) в воде, содержащей 50 мг/л С1 при 300 °С  [c.324]

Алюминий склонен к образованию питтинга в водах, содержащих ионы С1 . Это особенно сильно проявляется в щелях или застойных зонах, где пассивность нарушается в результате образования элементов дифференциальной аэрации. Механизм питтин-гообразования аналогичен механизму для нержавеющих сталей, описанному в разд. 18.4.1 и в этом случае наблюдается критический потенциал, ниже которого питтинг не возникает [4, 5]. При наличии в воде следов ионов Си + (даже в количестве 0,1 мг/л) или Fe + они реагируют с алюминием, и на отдельных участках отлагаются металлическая медь или железо. Эти металлы выполняют роль катодов, сдвигая коррозионный потенциал в положительном направлении до значения критического потенциала пит-тингообразования. Таким образом, они стимулируют как возникновение питтинга, так и его рост под действием гальванических  [c.342]


Смотреть страницы где упоминается термин Потенциал критический : [c.55]    [c.78]    [c.85]    [c.86]    [c.87]    [c.87]    [c.88]    [c.94]    [c.143]    [c.152]    [c.262]    [c.312]    [c.313]    [c.317]    [c.319]    [c.321]    [c.336]   
Оптические спектры атомов (1963) -- [ c.439 , c.444 ]

Катодная защита от коррозии (1984) -- [ c.35 ]

Коррозия и защита от коррозии (2002) -- [ c.125 , c.146 ]

Технический справочник железнодорожника Том 1 (1951) -- [ c.352 ]



ПОИСК



Алюминий критический потенциал питтингообразования

Залечивания критический потенциал

Инициирование коррозионного растрескивания под напряжением и критические потенциалы

Коррозионное растрескивание под напряжением (КРН) критический потенциал

Коррозия—Диаграммы Пурбе 1.7 Коррозионные диаграммы 1.8 — Необратимые потенциалы 1.7, 8 — Прямые и косвенные показатели коррозии 1.6 — Стандартный электродный потенциал 1.6, 7 — атмосферная — Загрязненность воздуха 1.12 — Критическая влажность 1.12. — Образование фазовых и адсорбционных пленок

Критический потенциал питтингообразования

Стали нержавеющие критический потенциал пнттингообразования



© 2025 Mash-xxl.info Реклама на сайте