Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Ферритная нержавеющая сталь

Такому разрушению подвержены (но несколько слабее) и ферритные нержавеющие стали. Двухфазные стали (аустенито-ферритные) обладают наименьшей склонностью к коррозионному растрескиванию.  [c.492]

Ферритные нержавеющие стали имеют наилучшую коррозионную стойкость после медленного охлаждения от температуры 925 °С или после отжига при 650—815 °С . Недавно разработанные ферритные нержавеющие стали повышенной чистоты содержат добавки молибдена и пониженные количества углерода и азота. Типичные сплавы имеют следующие составы, %  [c.301]


Холодная деформация любой нержавеющей стали обычно оказывает меньшее влияние на стойкость к общей коррозии, если при обработке не достигается температура, достаточная для протекания диффузионных процессов. Фазовые изменения, вызываемые холодной обработкой метастабильных аустенитных сплавов, не сопровождаются существенным изменением коррозионной стойкости . К тому же закаленная аустенитная нержавеющая сталь (с гранецентрированной кубической решеткой), содержащая 18 % Сг и 8 % Ni, имеет примерно такую же коррозионную стойкость, как закаленная ферритная нержавеющая сталь (с объемно-центрированной кубической решеткой), которая содержит такое же количество хрома и никеля, но меньше углерода и азота [11]. Однако, если аналогичный сплав, содержащий смесь аустенита и феррита, кратковременно нагревать при 600 °С, то возникает разница в химическом составе двух фаз и образуются гальванические пары, ускоряющие коррозию. Иными словами, различие в составе, независимо от того, чем оно вызвано, больше влияет на коррозионное поведение, чем структурные изменения в гомогенном сплаве. По-видимому, это можно отнести в целом к металлам и сплавам.  [c.302]

Некоторые из предложенных объяснений склонности ферритных нержавеющих сталей к межкристаллитной коррозии основаны на разнице скоростей растворения различных образующихся карбидов или на предполагаемой большей реакционной способности напряженной кристаллической решетки металла. Однако наиболее убедительное объяснение получено с помощью теории, широко используемой для объяснения этих явлений в аустенитных нержавеющих сталях. Согласно этой теории, разрушения происходят вследствие обеднения границ зерен хромом [36—38]. Различия в температурах и времени, необходимых для сенсибилизации этих сталей, объясняются более высокими скоростями диффузии углерода, азота и хрома в ферритной объемно-центрированной кубической решетке по сравнению с аустенитной гранецентрированной. В соответствии с этим, карбиды и нитриды хрома, которые растворены при высокой температуре, ниже  [c.310]

Практические рекомендации по использованию новых ферритных нержавеющих сталей 37 277  [c.31]

Ферритные нержавеющие стали (27% Сг). . .  [c.110]

Ферритные нержавеющие стали, имеющие повышенное содержание Сг или добавки ферритообразующих элементов. Они не подвержены фазовому превращению а у. К этому же классу относятся стареющие ферритные нержавеющие стали, в которых при определенных режимах термообработки из феррита выделяется ст - фаза  [c.5]


Сг—15Р —5В. .... 0,74 Ферритные нержавеющие стали  [c.260]

Во время быстрого охлаждения с температур выше 980 С по границам зерен выпадают карбиды. Такое выпадение карбидов, свойственное всем ферритным нержавеющим сталям, сопровождается существенным ухудшением коррозионной стойкости. Сварной шов особенно склонен к этому виду коррозии.  [c.283]

Для выявления карбидов и сг-фазы в аустенитной или ферритной нержавеющей стали. Условия травления температура 20— 30 °С. напряжение 3 В. Катод из нержавеющей стали  [c.45]

В растворе сульфата железа в серной кислоте ни одна из сталей 26—1S не оказалась устойчивой к МКК. Неустойчивость к МКК в этом растворе, а также в азотной кислоте отмечена и для обычных ферритных нержавеющих сталей, стабилизированных титаном. Коррозия в этом случае обусловлена селективным растворением карбидов или нитридов титана в среде с высоким окислительным потенциалом.  [c.167]

ГОСТ 6032—58. Методы испытания на межкристаллитную коррозию аустенитных и аустенитно-ферритных нержавеющих сталей, Стандартгиз, 1958.  [c.238]

Методы испытания на межкристаллитную коррозию аустенитных и аустенитно- ферритных нержавеющих сталей приведены в ГОСТ 6032-58.  [c.89]

Ферритная нержавеющая сталь  [c.530]

Некоторые составы зарубежных ферритных нержавеющих сталей  [c.36]

В состав применяемых в настоящее время нержавеющих сталей и сплавов наряду с хромом, алюминием и никелем входят в различном сочетании марганец, кремний, вольфрам, кобальт и другие элементы. Такие стали и сплавы в различной степени чувствительны к термическому воздействию при нагреве, что в значительной мере затрудняет установление технологического режима резки. Это обусловливается следующими свойствами сталей. Теплопроводность, как правило, уменьшается с увеличением степени легирования стали и числа легирующих элементов. С повышением содержания углерода теплопроводность понижается. Аналогичное влияние оказывает кремний и марганец. Особенно сильно снижают теплопроводность хром и никель. Кроме того, в некоторые марки сталей входят два и более легирующих элемента, суммарное действие их сильнее, чем одного из них в таком же количестве. Так, например, теплопроводность аустенитных сталей при 540° колеблется в пределах 0,01984—0,02025 кал/см- сек- град. Значения коэффициента теплопроводности для мартенситных и ферритных нержавеющих сталей колеблется в пределах 0,02187— 0,02284 кал[см сек град, причем эти значения уменьшаются с увеличением содержания хрома от 12 до 26%. С другой стороны, теплопроводность обычной углеродистой стали составляет более 0,0405 кал/см сек град, а теплопроводность низколегированных сталей, содержащих до 5% Сг, немного ниже.  [c.23]

Стали без фазового превращения так называемые ферритные нержавеющие стали с повышенным содержанием хрома или дополнительно легированные другими ферритообразующими элементами. К этому классу относятся также ферритные стали, способные при известных условиях нагрева выделять из феррита а-фазу, — так называемые стареющие ферритные нержавеющие стали.  [c.8]

Испытание на межкристаллитную коррозию сварных соединений аустенитных и аустенитно-ферритных нержавеющих сталей производится по методике, изложенной в ГОСТ 6032-58.  [c.138]

Нержавеющие хромистые стали хорошо свариваются. Однако ферритные нержавеющие стали при этом обладают одним существенным недостатком, а именно, возникающей при перегреве крупнозернистостью, которая не устраняется последующей термической обработкой из-за отсутствия фазовых превращений в этих сталях. Крупнозернистость вызывает повышенную хрупкость. Введение титана и азота в ферритные нержавеющие стали оказывает сдерживающее влияние на рост зерна и устраняет крупнозернистость.  [c.170]

Значительно меньшее практическое применение нашли аустенитно-ферритные нержавеющие стали, характеризующиеся нестабильностью свойств.  [c.172]

Значительное влияние структуры и металлургических факторов. Например, ферритные нержавеющие стали (объемноцентри-рованная кубическая решетка) гораздо более устойчивы к ионам С1 , чем аустенитные (гранецентрированная кубическая решетка). Латуни р и V (>40 % Zn) разрушаются в воде, но а-латунь (70 % Си, 30 % Zn) разрушается лишь в аммиаке или аминах. Любой крупнозернистый металл более склонен к КРН, чем тот же металл с более мелкими зернами, независимо от того, является ли растрескивание меж- или транскристаллитным.  [c.138]


Сенсибилизация ферритных нержавеющих сталей наблюдается при температурах, превышающих 925 °С стойкость к межкристаллитной коррозии восстанавливается при кратковременном (10—60 мин) нагреве при 650—815 °С. Следует отметить, что эти температурные интервалы заметно отличаются от соответствующих интервалов для аустенитных нержавеющих сталей. Для ускоренных испытаний на межкристаллитную коррозию применяют аналогичные растворы (например, кипящий раствор USO4— H2SO4 или 65 % HNO3). Скорость межкристаллитной коррозии и степень поражения сталей обоих классов в этих растворах примерно одинаковы. Однако в сварных изделиях разрушения в ферритных сталях происходят как в области, непосредственно прилегающей к месту сварки, так и самом сварном шве, а в аустенитных сталях разрушения локализованы в околошовной зоне.  [c.309]

Высокохромистые двухфазные аустенитно-ферритные стали обладают высокой коррозионной стойкостью, коррозионно-усталостной про шостью. хорошими механическими характеристиками. Благодаря высокой стойкости к коррозии под действием кавитации из этих сталей целесообразно изготовлять детали насосов высокой подачи для перекачки морской воды. Двухфазные аустенигно-ферритные нержавеющие стали находят широкое применение в химической и нефтехимической промышленности в качестве коррозионно-стойких конструкционных материалов. Стойкость к коррозии в морской воде этих сталей сравнима со стойкостью аустенитных сталей, т.е. достаточно высока, а сравнивае-мость и обрабатываемость лучше.  [c.20]

Поверхность ферритной нержавеющей стали 430 примерно через год после начала экспозиции в морской атмосфере частично покрывается ржавчиной. Более высокое содержание хрома (17 /о) но сравнению со сталью 410 повышает стойкость к питтинговой коррозии. Скорость общей коррозии в морской атмосфере, аналогичной атмосфере Кристобаля, настолько мала, что с большим трудом может быть определена путем измерения массы [31].  [c.58]

Сталь 430, ферритный сплав, подобно мартенситным сталям, подвержена местной коррозии как на малых, так и на больших глубинах. В Кюр-Биче максимальная глубина питтинга на образцах из этой стали за 1,5 года достигла 1,5 мм [4] хотя отдельные пластинки в начальный период экспозиции могут совсем не иметь ниттингов. Более длительный по сравнению со сталью 410 индукционный период местной коррозии, иногда наблюдавшийся на стали 430, может объясняться более высоким содержанием хрома, однако полной уверенности в этом нет. Например, при глубоководных коррозионных испытаниях, результаты которых приведены в табл. 19. расположенные рядом образцы из сталей 410 и 430 корродировали примерно одинаково. Однажды начавшись, в дальнейшем коррозия может протекать с очень высокой скоростью. Как и в случае стали 410, ни высокая скорость потока воды, ни катодная защита не обеспечивают надежного предупреждения коррозии, поэтому сталь 430 и другие подобные ей ферритные нержавеющие стали не рекомендуется применять в условиях погружения.  [c.64]

Влияние температуры полностью неясно тенденция к растрескиванию может быть максимальной при промежуточных температурах, но не наблюдается иммунитета и при низких и высоких температурах. Тенденция к растрескиванию является функцией содержания никеля в сплавах 17—19% Сг-ЬРе. Так, ферритные нержавеющие стали (мало никеля) и инконель-600 (много никеля) явно устойчивы. Инколой-800, хотя и лучше нержавеющих сталей типа 300, но не имеет иммунитета к растрескиванию в среде, содержащей хлориды и кислород, при наличии напряжения.  [c.257]

Для ферритных нержавеющих сталей по сравнению с аусте-нитньши характерен больший перенос массы в среде натрия, особенно при содержании в них хрома менее 10—12% и при температурах более 550° С. Для сталей с содержанием хрома, превышающим 12%, интенсивность переноса массы та же, что и для хромоникелевых сталей, однако их стойкость в гораздо большей степени, чем стойкость хромоникелевых сталей, зависит от содержания в жидком металле кислорода.  [c.292]

Технология горячей обработки стали типа Х18Н10Т должна строиться с учетом изменения сопротивления деформации по мере роста температуры металла, пониженной теплопроводности стали, макроструктуры и фазового состава металла в литом состоянии, химического состава, в том числе микросодержания полезных и вредных элементов. Фундаментальные исследования Н. С. Алферовой [216] показали повышение пластичности хромоникелевой нержавеющей стали с титаном и ниобием по мере повышения температуры, но до определенного предела (рис. 73). Одновременно была показана пониженная пластичность аустенитной нержавеющей стали, особенно с повышенным содержанием а-фазы, по сравнению с углеродистой и ферритной нержавеющей сталью. Наибольшая пластичность стали типа Х18Н10Т была при 1175—1250° С.  [c.300]

В структуре аустенито-ферритной нержавеющей стали типа 12Х18Н10Т (ГОСТ 5949—75) присутствует некоторое количество а-фазы. Ее тем больше, чем выше концентрация ферритообразующих элементов (Сг, Т1, 51) и ниже концентрация аустенитообразующих элементов (С, N1).  [c.345]

Ферритные нержавеющие стали по коррозионной стойкости в средах, не содержащих ионы хлора, не уступают классическим хро-моникелевшл сталям аустенитного класса и обеспечивают чистоту находящегося в них продукта. Наиболее слабым местом как по прочности, так и по коррозионной стойкости в этих сталях являются сварше соединения. Само понятие свариваемости включает в себя отсутствие коррозионно-активных участков металла в шве и зоне термического влияния (з.т.в.) сварного соединения, определение которых трудоемко и неоднозначно.  [c.44]

Особенно сильной коррозии часто подвергаются сварные соединения, если не приняты меры к тому, чтобы их потенциал не оказался менее благородным, чем потенциал основного металла. Бровер наблюдал сильную коррозию сварного шва на трубках из нержавеющей стали типа 304 (18-8). Трубки многократно травили ингибированной 10%-ной соляной кислотой при температуре 70° С. Лабораторные коррозионные испытания подобных пар в ингибированной соляной кислоте показали, что коррозия в основном развивается на сварном шве (более 250 MMjeod). Скорость коррозии металла шва (сталь типа 312) в изолированном виде оказалась в 12—15 раз больше скорости коррозии малоуглеродистой стали или нержавеющей стали типа 304. Разрушение сварного шва в теплообменниках автор объясняет возникновением контактной коррозии между аустенитной и ферритной фазами сплава. Исследования стационарных потенциалов и поляризационных характеристик типичных аустенитных и ферритных нержавеющих сталей подтвердили это предположение. Было показано, что наиболее целесообразно в этом случае использовать инконель А и сварочные электроды из стали типа 310 (24—26% Сг 19—22% Ni макс. 0,25% С). Для трав-  [c.185]


На практике в качестве анодных ингибиторов используются анионы, однако не следует считать, что только анионы функционируют при анодном ингибировании. Например, в случае нержавеющих сталей ингибированию может способствовать окислительно-восстановительная система Fe VFe за счет пассивирования.. При низких концентрациях и активных значениях потенциалов восстановление служит дополнительной катодной реакцией и увеличивает скорость растворения. Однако, как в примерах, приведенных в разд. 2.8, если катодная плотность тока превысит критическую плотность тока анодной реакции, то наступает пассивирование металла. Эта ситуация представлена диаграммой (фиг. 70), иллюстрирующей влияние концентрации ингибитора и скорости потока на коррозию ферритной нержавеющей стали в присутствии сульфата трез валенТного железа [91]. Этот тип ингибирования, который вызывает пассивность, несколько отличается от ингибиторного действия хроматов и нитритов, так как последние теряют кислород в процессе восстановления. Поскольку некоторые авторитетные специалисты называют такие ингибиторы пассиваторами то этот термин должен включать не только окислительно-восстановительные системы типа Fe /Fe , пример которой приводился вывде, но также систему Нг/Н на нержавеющей стали, содержащей благородные легирующие добавки (разд. 2.8).  [c.145]

В высокохромистых ферритных нержавеющих сталях (после закалки или нормализации с высоких температур) наиболее быстро растворяются в слабоокислительных условиях неравновесные обогащенные железом карбиды хрома, которые выпадают по границам зерен в процессе охлаждения. В дур-алюмине наибольшей скоростью растворения обладает интерметаллид СиАЬ, в то время как обедненный твердый раствор растворяется гораздо медленнее. Возникающие внутренние напряжения во всех случаях будут способствовать активации границ зерен. Внутренние напряжения могут усиливаться вследствие образования продуктов коррозии по границам зерен. Межкристаллитная коррозия гетерогенных сплавов может развиваться и в условиях, когда вся поверхность металла находится в активном состоянии, если имеется большая разница в равновесных потенциалах или поляризуемости структурных составляющих и физически неоднородных участков гетерогенного сплава. Она может медленно развиваться и при пассивнохМ состоянии зер на и границ зерен, если есть значительная разница в их скоростях растворения.  [c.57]

Рис. 4.12. Влияние температуры испытания на припорогорый рост усталостной трещины в ферритной нержавеющей стали 18Сг-МЬ Рис. 4.12. <a href="/info/222925">Влияние температуры</a> испытания на припорогорый <a href="/info/493667">рост усталостной трещины</a> в ферритной нержавеющей стали 18Сг-МЬ
То, что критерий играет важную роль в развитии усталостных трещин, хорошо иллюстрируют примеры, приведенные на рис. 4.12 и 4.13 [35, 36]. Из рис. 4.12 видно, что изменение температуры испытания от комнатной до 700 °С сильно изменяет значения образцов из ферритной нержавеющей стали системы 18%Сг-МЬ. С увеличением температуры кинетические кривые усталости смещаются в сторону меньших значений Аномальное поведение этой стали при температуре испытаний 500 °С авторы [35] связывают с эффектом закрытия вершины усталостной трещины, вызванным пластическим поведением. Изменение режимов отпуска закаленной высокопрочной легированной стали 300-М (0,42С 0,76Сг 1,76М1 0,41Мо вес. %) в пределах от 100 до 650 С с соответствующими значениями предела прочности от 2338 до 1186 МПа также сильно влияет на изменение положения начальных участков кинетических диаграмм усталостного разрушения (см. рис. 4.13) [36].  [c.127]

В табл. 4 приведены основные дефекты структуры стали. Ряд методов определения качества структуры стандартизован. Метод определения величины зерна стали (ГОСТ 5639-51). Методы определения неметаллических включений в стали (ГОСТ 1778-62). Эталоны микроструктуры стали (ГОСТ 8233-56 и ГОСТ 5640-59). Метод определения глубины обезуглероживания стальных полуфабрикатов и деталей микроанализом (ГОСТ 1763-42). Метод определения окалиностой-кости стали (ГОСТ 6130-52). Метод испытания стали на чувствительность к механическому старению (ГОСТ 7268-54). Методы испытания на межкристаллитную коррозию аустенитных и аустенитно-ферритных нержавеющих сталей (ГОСТ 6032-58). Методы определения микроструктуры твердых металлокерамических сплавов (ГОСТ 9391-60) и макроструктуры стали (ГОСТ 10243-62). Методы определения структуры серого и высокопрочного чугуна (ГОСТ 3443-57).  [c.8]

Ппним из путей решения важней народнохозяйственной пробле-ш экономии остродефицитного никеля является значительное расширение применения в качестве конструкционного материала для аппаратуры химических производств экономнолегированных аустенит-но-ферритных нержавеющих сталей.  [c.11]


Смотреть страницы где упоминается термин Ферритная нержавеющая сталь : [c.297]    [c.310]    [c.319]    [c.206]    [c.121]    [c.887]    [c.259]    [c.24]    [c.524]    [c.96]    [c.161]    [c.162]    [c.62]    [c.293]   
Конструкционные материалы Энциклопедия (1965) -- [ c.2 , c.277 , c.287 ]



ПОИСК



504—505 ( ЭЛЛ) нержавеющие

Аустенито-ферритная сталь нержавеющая

Влияние температуры и концентрации азотной кислоты на коррозию нержавеющих аустенитных и ферритных сталей

Мартенсито-ферритные и мартенситные стали 2 Влияние основных легирующих элементов на свойства хромистых нержавеющих сталей

Нержавеющая сталь автоматная аустенито-ферритная

Нержавеющая сталь автоматная ферритная

Сварка 13-ных хромистых нержавеющих стаСварка высокохромистых ферритных сталей

Сварка ферритно-аустенитных нержавеющих сталей

Сталь нержавеющая

Сталь ферритная

Электроды для сварки высоколегированных хромистых ферритных и феррито-мартенситных жаропрочных и нержавеющих сталей



© 2025 Mash-xxl.info Реклама на сайте