Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Двойной Строение

Более высокие механические свойства закаленной и высоко-отпущенной стали по сравнению с отожженной или нормализованной (при равной прочности у закаленной и высокоотпущен-ной Оо,2, ip, Он выше) объясняются различным строением сорбита (перлита) отпуска и сорбита закалки, имеющих, как указывалось выше, в первом случае зернистое, а во втором — пластинчатое строение. Двойная термическая обработка, состоящая в закалке с последующим высоким отпуском, существенно улучшающая общий комплекс механических свойств, является основным видом термической обработки конструкционных сталей и называется улучшением.  [c.280]


Рис. 106. Схема строения двойного электрического слоя Рис. 106. Схема строения двойного электрического слоя
СТРОЕНИЕ И УРАВНЕНИЕ ДВОЙНОГО ЭЛЕКТРИЧЕСКОГО СЛОЯ НА ГРАНИЦЕ МЕТАЛЛ-ЭЛЕКТРОЛИТ  [c.157]

Строение двойного электрического слоя не имеет значения для величины обратимого электродного потенциала, которая определяется изменением изобарно-изотермического потенциала соответствующей электрохимической реакции. В то же время строение двойного электрического слоя играет, важную роль в кинетике электродных процессов, в том числе и в кинетике обмена ионами в равновесных условиях, характеризуя интенсивность этого обмена (величину тока обмена ц).  [c.157]

Рис. 110. Плотное строение двойного электрического слоя Рис. 110. Плотное строение двойного электрического слоя
Рис. 112. Строение двойного электрического , слоя при специфической адсорбции анионов Рис. 112. Строение двойного электрического , слоя при <a href="/info/755135">специфической адсорбции</a> анионов
При изучении строения двойного слоя иногда удобнее пользоваться значением интегральной емкости Q  [c.167]

Таким образом, величины Qj и зависят от потенциала металла Уме = Уме)обр + и строения ДВОЙНОГО электрического слоя на границе металл—раствор,так как Qi и Qa = / ipj), а il определяется строением двойного электрического слоя.  [c.200]

Из уравнения (535) следует, что г] уменьшается с уменьшением pH среды и что оно зависит от tpi, т. е. строения двойного электрического слоя. Последнее обстоятельство объясняет влияние адсорбции различных веществ на величину перенапряжения водорода на катоде.  [c.254]


Теория строения двойного электрического слоя приводит к выводу, что в разбавленных растворах кислот, не содержащих посторонних электролитов  [c.254]

Таким образом, теория замедленного разряда дает хорошее совпадение коэффициента bg с опытными данными и объясняет также зависимость т] от pH раствора и строения двойного электрического слоя.  [c.255]

Рис. 212. Схема строения двойного электрического слоя в присутствии адсорбированного кислорода Рис. 212. Схема <a href="/info/588422">строения двойного электрического слоя</a> в присутствии адсорбированного кислорода
Майкельсон применил интерферометрическое наблюдение для оценки малых угловых расстояний между двойными звездами, а также для оценки углового диаметра звезд. Метод Майкельсона, равно как и применение его к определению размеров субмикроскопических частичек, будет изложен ниже (см. 45). Наконец, понятно, что интерференционные методы, позволяющие с огромной точностью определять длину волны, могут служить для самых тонких спектроскопических исследований (тонкая структура спектральных линий, исследование формы и ширины спектральных линий, ничтожные изменения в строении спектральных линий). Интерференционные спектроскопы, их достоинства и недостатки будут обсуждены вместе с другими спектральными приборами (дифракционная решетка, призма) в 50.  [c.149]

ОППОНЕНТ. Мне кажется, что, наблюдая и изучая, например, отражение, преломление, двойное лучепреломление, можно вообще ничего не знать о строении света. Разве нельзя вывести систему определенных закономерностей непосредственно из наблюдаемых фактов  [c.8]

Большое влияние на коррозионный процесс оказывает адсорбция катионов и особенно анионов соли на поверхности корродирующего металла. При этом происходит изменение строения двойного электрического слоя или нарушение пассивной пленки, что влияет на протекание электродных процессов и, следовательно, на скорость коррозии.  [c.27]

Влияние органических ингибиторов коррозии на кинетику электрохимического растворения металла возможно лишь в условиях адсорбции этих веществ на корродирующей поверхности. В зависимости от степени заполнения частицами ингибитора поверхности металла, подвергающейся коррозии, изменяется строение двойного слоя, а следовательно, и кинетика электрохимических реакций, т.е. может тормозиться стадия разряда или диффузии реагирующих частиц либо предшествующая разряду стадия проникновения этих частиц через адсорбированный слой молекул ингибиторов. В связи с этим особое значение имеет потенциал нулевого заряда , т.е. потенциал металла, измеренный по отношению к электроду сравнения в условиях, когда заряд металла равен нулю. При потенциалах вблизи потенциала нулевого заряда металл обладает наибольшей способностью адсорбировать растворенные в электролите вещества и хуже всего смачивается растворителем.  [c.143]

Химическая стойкость полимерных материалов зависит от строения полимеров. Молекулы большинства полимеров имеют линейное строение. Отдельные линейные цепи дополнительно соединены главными связями, при этом они становятся менее подвижными. С ростом числа поперечных связей полимеры теряют ряд характеристик, присущих линейным полимерам, — эластичность, вязкость и т. д. Такие полимеры в большинстве случаев не растворимы и не плавятся. Процессы сшивки молекул происходят за счет разрывов двойных связей. Сила сцепления между отдельными линейными молекулами может быть увеличена, если между ними создавать химическое взаимодействие. Поэтому появляется необходимость создания поперечных химических связей между отдельными цепями высокомолекулярных соединений, т. е. необходимость создания молекул трехмерного строения. На рис. 9 показана схема строения высокомолекулярного вещества.  [c.59]


Атомный номер лантана 57, атомная масса 138,91, атомный радиус 0,1877 нм. Существует один стабильный изотоп. Электронное строение [Хе]5й б5 . Электроотрицательность 0,8. Потенциал ионизации 5,577 эВ, Кристаллическая решетка до 310 °С двойная а-п.г. с параметрами а— =0,3774 нм, с= 1,2171 нм, с/а=3,22 при температуре от 310 до 868 С Р-о.ц.к. с параметром а=0,5305 нм и выше 868 °С, у-г.ц.к. с параметром 0=0,426 нм. Плотность 6,146 т/м . /пл=921°С, /кип=3464°С. Упругие свойства =38 ГПа, 0=15 ГПа.  [c.77]

Как мы видели, если принять, что поле атомного остова щелочных металлов обладает шаровой симметрией, то число стационарных орбит валентного электрона будет то же, что и у водорода, чего недостаточно, чтобы объяснить дублетный характер линий. Формально дублетность может быть объяснена, если предположить что все термы, кроме термов S, двойные и что переходы между ними регулируются некоторым добавочным правилом отбора. У прочих элементов, у которых линии представляют собою еще более сложные группы, приходится считать уровни тройными, четверными и т. д. Делалась попытка объяснить это сложное строение спектров гипотезой, что атомные остовы не обладают шаровой симметрией. Тогда для всякой орбиты квантовые условия (2) 4 должны быть распространены не только на радиус-вектор г и азимут ср, но и на третью координату, например на широту Ь, аналогично случаю внешнего возмущающего поля. Это тр- тье пространственное квантование приводит к результату, что плоскость орбиты внешнего электрона может располагаться лишь под опреде-  [c.57]

Строение и дефекты твердых тел. Кристаллическая решетка — это присущее кристаллическому состоянию вещества регулярное расположение частиц (атомов, ионов, молекул), характеризующееся периодической повторяемостью, в трех измерениях. Полное описание кристаллической решетки дается пространственной группой, параметрами элементарной ячейки, координатами атомов в ячейке. В этом смысле понятие кристаллической решетки эквивалентно понятию атомарной структуры кристалла. Русский ученый Е. С. Федоров почти на 40 лет раньше, чем были найдены методы рентгеноструктурного анализа, рассчитал возможные расположения частиц в кристаллических решетках различных веществ. Он подразделил кристаллы на 32 класса симметрии, объединяющих 230 возможных пространственных групп. Кристаллы могут различаться по двойному лучепреломлению, по пьезо- и пироэлектрическим свойствам, образованию адсорбционных центров, работе выхода электронов и т. п.  [c.11]

Дальнейшее развитие теории строения двойнрго электрического слоя было дано Е работах А. Н. Фрумкина и его школы, Грэма и др. По Грэму, в плоской (гельмгольцевой) части двойного слоя имеется внутренняя плоскость электрических центров специфически адсорбируемых ионов (по Грэму — только анионов), которые могут подойти на более близкие расстояния бадс, с соответствующим этой плоскости потенциалом градс (рис. 112).  [c.160]

Уравнения (386) и (387) справедливы для любого окислительновосстановительного электрода и показывают зависимость скоростей электродных процессов от потенциала и строения двойного электрического слоя. При этом видно, что на скорость электродного процесса оказывает влияние только часть общего скачка потенциала, приходящаяся на плотную часть двойного электрического слоя (т. е. на зону, где протекает электрохимическая реакция), гр = (Ум.)обр + А1/ — il i.  [c.201]

А. Н. фрумкиным и его школой теория замедленного разряда была усовершенствована (1933—1950 гг.) введением в кинетическое уравнение (533) вместо объемной Сн+ поверхностной концентрации сн+ и учетом влияния на эту концентрацию и энергию активации процесса Qj строения двойного электрического слоя через величину ijJi, т. е.  [c.253]

Анализ данных, представленных в табл. 45, показал, что ингибиторы Реакор-11 ЮА и СПМ-1 проявляют смешанный эффект торможения, вызывая снижение тока коррозии в результате уменьшения площади поверхности металла, на которой протекает катодная реакция водородной деполяризации, а также изменяя строение двойного электрического слоя на границе металл-коррозионная среда и величину адсорбционного Ч, -потенциала. Ингибиторы Реакор-11 ЮСП и СПМ-2 замедляют коррозию стали за счет реализации Ч )-эффекта, то есть характеризуются энергетическим воздействием на поверхность металла.  [c.301]

Причина дихроизма состоит в анизотропно.м строении поглощаюитего тела. Этим свойством в большей или меньшей степени обладают те поглощающие свет среды, которым свойственно и двойное лучепреломление.  [c.38]

Эффект Зеемана лежит в основе объяснения двух главных магнитооптических явлений — магнитного вращения плоскости поляризации (эффект Фарадея) и магнитного двойного лучепреломления (эффект Коттона — Мутона). Изучение эффекта Зеемана на спектральных линиях атомов в видимой и ультрафиолетовой областях сыграло большую роль в развитии учения о строении атома, особенно в период, последовавший за созданием теории Бора. В настоящее время исследование эффекта Зеемана на спектральных линиях атомов представляет собой один из важных методов определения характеристик уровней энергии атомов и значительно облегчает интерпретацию сложных атомных спектров. Изучение зеема-новского расщепления спектральных линий позволяет также получать ценные сведения о магнитных полях, в источниках света, например при исследовании Солнца.  [c.102]

Можно пойти дальше по этому пути и предположить, что взаимодействие осуществляется также посредством некоторых образований типа рассмотренных в конце предыдущего параграфа двойных сил, которые распределены по поверхности непрерывно. В современных теориях сплошных сред подобные предположения делаются, однако значение их состоит скорее в иллюстрации весьма большой степени общности, которая может быть достигнута в рамках представления о сплошной среде и о потенциальной возможности значительного расширения этих рамок с тем, чтобы описать эффекты, относимые обычно за счет дискретности строения реальных тел. Но существующие теории, уже нашедшие применения к реальным объектам, строятся почти искючительно на основе классической модели, которая до недавнего времени представлялась совершенно очевидной и единственно возможной.  [c.31]


Известно, что металл с кристаллической структурой представляет собой систему положительных ионов (ядра, окруженные электронами внутренних орбиталей), 1югруженную в отрицательный электронный газ обобществленных внешних электронов. Электроны, обладающие достаточным запасом кинетической энергии, вырываются из металла и образуют над его поверхностью отрицательно заряженное облако. Электроны, находящиеся внутри металла и вблизи его поверхности, отталкиваются от этого облака, смещаясь внутрь металла. В результате уменьшается поверхностная плотность электронов и индуцируется положительный заряд, равный по абсолютной величине отрицательному заряду электронного облака. Сила взаимодействия между зарядами - сила электрического изображения - имеет значительную дальность действия, до 10 мкм от поверхности. Следовательно, энергетический потенциал поверхности характеризуется потенциалом внепп1сго пространства на расстоянии примерно 10 мкм от поверхности. Облако электронов совместно с наружным слоем положительных ионов образует двойной электрической слой. Таким образом, наличие электрического потенциала поверхности твердого тела и полярных молекул поверхностно-активных веществ предопределяет уровень их энергетического взаимодействия при адсорбции и строение адсорби -)ованной пленки.  [c.54]

Наиболее общей тенденцией современных исследовний при анализе процесса фрикционного взаимодействия поверхностей с позиций физи-кохимии является рассмотрение энергетических параметров, характеризующих твердое тело и его поверхность, строение и свойства двойных электрических слоев, строение и свойства поверхностного слоя и т.п. Различия межмолеулярных взаимодействий в объемной и поверхностной фазах обусловливают избыток энергии поверхностного слоя на границе раздела фаз - поверхностную энергию, которая определяет энергетическое состояние поверхности.  [c.106]

Атомный номер калифорния 98, атомная масеа (251). Известно 17 изотопов (240—256) наиболее долгоживущий — с атомной массой 251 с периодом полураспада 900 лет. Электронное строение [Кп]5/ 7д . Потенциал ионизации 6,3 эВ. Кристаллическая решетка при температуре до 600 °С двойная гексагональная плотная с параметрами а=0,339 нм, с= 1,101 нм, при 600—725 °С — г.ц.к. с параметром а = 0,494 им, при >725 °С — о. ц. к. с параметром а = 0,573 нм.  [c.175]

Например, в молекуле этилена jHi между атомами углерода имеется двойная связь, которая состоит из одной о-связи и одной я-связи. Строение молекулы имеет ту особенность, что все ст-связи (С — Н и С — С) лежат в одной плоскости, а я-связь — в плоскости, перпендикулярной первой. Эти связи характеризуются также различной энергией энергия а-связи равна (округленно) 59 ктл1моль, л-связи — 41 ккал1моль. В органических полупроводниках с сопряженными связями облака л-электропов всех атомов, входящих в молекулу, взаимно перекрываются, т. к. я-электроны делокализованы они принадлежат всем атомам в системе сопряженных связей и обладают к тому же высокой подвижностью.  [c.207]


Смотреть страницы где упоминается термин Двойной Строение : [c.366]    [c.161]    [c.261]    [c.345]    [c.38]    [c.87]    [c.165]    [c.134]    [c.165]    [c.114]    [c.206]    [c.48]    [c.103]    [c.105]    [c.108]    [c.156]    [c.158]    [c.359]   
Размерная электрохимическая обработка деталей машин (1976) -- [ c.13 , c.16 ]



ПОИСК



28—31 — Строение

Двойни

П двойной



© 2025 Mash-xxl.info Реклама на сайте