Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Закономерности кинетики разрушения

Условия нагружения элемента конструкции, как правило, могут быть реализованы в широком диапазоне варьирования температуры, частоты нагружения, асимметрии цикла путем силового воздействия на элемент конструкции по нескольким осям при разном соотношении между величинами компонент нагружения и т. д. Реальные условия многопараметрического эксплуатационного нагружения материала, воплощенного в том или ином элементе конструкции, ставят вопрос об использовании интегральной оценки роли условий нагружения в развитии процесса разрушения. В связи с этим необходимо введение представления об эквивалентном уровне напряжения для проведения расчетов с использованием новой характеристики напряженного состояния материала в виде эквивалентного КИН. Использование эквивалентной величины в свою очередь требует получения сведений о закономерностях процесса разрушения в некоторых тестовых или стандартных условиях циклического нагружения материала, в которых осуществлено построение базовой или единой кинетической кривой. Параметры кинетической кривой в стандартных условиях опыта становятся характеристиками только свойств материала. Разнообразие реальных условий нагружения материала, в том числе и влияние геометрии элемента конструкции, рассматривается в условиях подобия путем сведения всех получаемых кинетических кривых к базовой или единой кинетической кривой. Поэтому влияние того или иного параметра воздействия на кинетику усталостной трещины в измененных условиях опыта по отношению к тестовым условиям испытаний может быть учтено через некоторые константы подобия. Они выступают в качестве безразмерного множителя.  [c.190]


Разработана методика исследования закономерностей кинетики развития усталостных трещин и условий перехода к хрупкому разрушению при комбинированном воздействии гармонического и ударно- -го нагружений при низких температурах 143].  [c.263]

ИССЛЕДОВАНИЕ КИНЕТИКИ ПОВРЕЖДАЕМОСТИ И ЗАКОНОМЕРНОСТЕЙ УСТАЛОСТНОГО РАЗРУШЕНИЯ МЕТАЛЛОВ  [c.87]

С целью проверки и обоснования основных положений термодинамической теории впервые проведены комплексные экспе-ри.ментальные исследования кинетики изменения составляющих энергетического баланса процесса повреждаемости и закономерностей усталостного разрушения металлов при симметричном цикле осевого растяжения — сжатия в широком диапазоне амплитуд циклических напряжений [4, 8]. Получены суммарные, относительные и удельные (отнесенные к единице деформируемого объема материала) термодинамические характеристики процесса, дающие богатую и ценную информацию о физической природе и механизмах процесса усталостного разрушения металлов.  [c.90]

Исследование кинетики повреждаемости и закономерностей усталостного разрушения металлов/ Федоров В. В., Ромашов Р. В.— В ки. Механическая усталость металлов Материалы VI Междунар. коллоквиума. Киев Наук, думка, 1983, с. 87—97.  [c.423]

Строение изломов силикатных стекол и ситаллов отражает общие и частные закономерности хрупкого разрушения влияние на разрушение дефектов поверхности, кинетику и направление продвижения трещин, влияние вида напряженного состояния, прочности стекла.  [c.90]

В настоящее время используют два основных метода расчета остаточного ресурса при малоцикловых нагрузках по ГОСТ 25859-83 Сосуды и аппараты стальные. Нормы и методы расчета на прочность при малоцикловых нагрузках по известным закономерностям кинетики развития усталостных трещин в соответствии с канонами механики разрушения.  [c.212]

Описанные закономерности излучения звука при некоторых элементарных актах движения твердого тела, разумеется, дают лишь весьма поверхностное представление о полной картине явления. В целом акустическая эмиссия оказывается сложным физическим процессом, тесно связанным с движением дислокаций, кинетикой разрушения ) и т. д., причем зачастую она оказывает сильное обратное влияние на вызвавшие ее процессы. Например, акустическое излучение, возбуждаемое движущейся трещиной, оказывает воздействие на закон движения самой трещины [71]. То же самое, по-видимому, можно сказать и о движении дислокаций. Трудность интерпретации регистрируемых сигналов акустической эмиссии в реальных, т. е. в ограниченных, образцах усугубляется также весьма сложной структурой излучаемого волнового поля, поскольку при ней могут возбуждаться любые типы волн, которые существуют  [c.278]


Для полимерных материалов, как показали эксперименты, процесс разрушения можно условно разделить на следующие фазы разрушение макромолекул и образование свободных радикалов зарождение, накопление и развитие микротрещин их слияние, приводящее к макроразрушению образца. Обобщая экспериментальные данные и изучая закономерности кинетики термоактивационных процессов, С. И. Журков пришел к следующей зависимости долговечности т образца от напряжений о и температуры Т  [c.60]

Расчеты элементов конструкций на малоцикловую усталость базируются на экспериментальных данных изучения закономерностей сопротивления деформированию и разрушению при циклическом упруго-пластическом деформировании, а также исследованиях кинетики неоднородного напряженно-деформированного состояния и  [c.618]

Расчеты элементов конструкций на малоцикловую усталость базируются на экспериментальных данных изучения закономерностей сопротивления деформированию и разрушению при циклическом упруго-пластическом деформировании, а также исследованиях кинетики неоднородного напряженно-деформированного состояния и накопления повреждений в зонах концентрации — местах вероятного разрушения. Ниже приведены основные понятия и некоторые результаты изучения кинетики деформирования и разрушения материалов при циклическом упруго-пластическом деформировании.  [c.683]

Технологический процесс аналогичен эмалированию, однако в основе его заложены отличные от эмалирования принципы. Здесь при нагревании некоторые компоненты покрытия переводятся целиком в жидкое состояние. Появление жидкой фазы способствует тому, что в защитном слое происходит химическое взаимодействие между исходными веществами. В результате этого взаимодействия образуются тугоплавкие и стойкие к окислению соединения, которые служат эффективной защитой тугоплавких металлов от разрушения при высокой температуре. Скорость образования этих соединений будет зависеть от условий обжига, поэтому изучение кинетики процесса крайне важно для практики. В настоящей работе приведены результаты детального исследования процесса наплавления и установлены некоторые закономерности зависимости свойств покрытий от условий их наплавления.  [c.148]

В случае анализа развития разрушения в области малоцикловой усталости, когда трещины имеют небольшие размеры к моменту перехода к ускоренному разрушению, их называют малыми трещинами (см. рис. 3.1, 3.2). Речь идет о разрушении, которое аналогично последнему этапу развития разрушения больших трещин. Однако кинетика малых трещин рассматривается в условиях постоянства деформации. По вопросу кинетики коротких трещин можно получить подробную информацию в обзорах [10,11], а для малых трещин подробный анализ закономерностей дан, например, в обзоре [12].  [c.132]

Основным направлением совершенствования расчета прочности изделий, работающих в условиях малоциклового нагружения, является (наряду с уточнением расчета статической прочности и корректировкой запасов) разработка метода оценки малоцикловой прочности на основе анализа напряженно-деформированного состояния (прежде всего в зонах концентрации) с учетом его по-цикловой кинетики. Такой расчет должен базироваться на изучении закономерностей малоциклового деформирования и критериев разрушения с учетом основных факторов.  [c.3]

Основные механические закономерности сопротивления материалов малоцикловому и длительному циклическому нагружению, а также деформационно-кинетический критерий малоциклового и длительного циклического разрушения необходимы для решения соответствующих задач определения кинетики деформированных состояний в зонах концентрации и оценки долговечности на стадии образования трещины. Полученные данные о сопротивлении циклическому деформированию и разрушению использованы для расчета малоцикловой усталости циклически нагружаемых конструкций. Применительно к сварным трубам большого диаметра магистральных газо- и нефтепроводов, волнистым компенсаторам и металлорукавам на основе их испытаний разработаны и экспериментально обоснованы методы расчета малоцикловой усталости при нормальных и высоких температурах.  [c.275]


Использование установки ИМАШ-9-66 открывает принципиально новые возможности для изучения влияния таких факторов, как температура, время и скорость растяжения, на процессы упрочнения и разупрочнения металлов и сплавов в различном структурном состоянии (после тех или иных режимов термической или термомеханической обработок). Измерение микротвердости может служить также одним из чувствительных методов изучения механизма деформации, закономерностей фазовых и структурных превращений широкого класса материалов. Например, в работах [66 67 ], выполненных на установке ИМАШ-9-66, показано, что метод измерения микротвердости позволяет на основании анализа температурной зависимости микротвердости устанавливать температурные интервалы для полупроводниковых материалов с различными механизмами деформации, а также определять природу этих механизмов и изучать влияние на них легирования и других факторов. С помощью полученных температурных зависимостей микротвердости проведено исследование кинетики процессов старения и разупрочнения ряда сталей и сплавов [48, с. 25—32 85—95 68 69], влияния фазового наклепа на упрочнение аустенита [50, с. 27—31 ], роли неметаллических включений в процессе высокотемпературного разрушения стали [50, с. 110—114 129—132] и др.  [c.172]

Суть метода сеток заключается в том, что на поверхность модели, которая обычно изготавливается из того же материала, что и реальное изделие (иногда используется другой материал), наносится сетка с заданными параметрами. В процессе деформирования образца, включая деформирование его поверхности, сетка искажается в той же мере, что и поверхность. Измеряя искажение элементов сетки, можно судить об упругих и пластических деформациях модели. Преимуш,ество метода — наглядность, достоверность, сравнительная простота, возможность исследования всего поля деформации и кинетики процесса пластического деформирования вплоть до разрушения. Возможность перерывов в испытаниях при разных степенях деформации с производством необходимых измерений позволяет установить количественные закономерности местной пластической деформации в различных участках и особенно в зонах концентрации деформации. Имеется также возможность изучения кинетики изменения концентрации напряжений при нагружении образца. Недостатки метода малая чувствительность при измерении деформаций менее 5% возможность изучения деформаций, как правило, только на поверхности.  [c.35]

Как указано выше, процесс разрушения металлов при циклическом нагружении можно условно разделить на три периода зарождение усталостной трещины, ее до-критический рост и долом. Поскольку первые два периода — определяющие, то именно на их изучении было сосредоточено основное внимание исследователей, причем раскрытию механизма и закономерностей роста усталостной трещины уделялось больше внимания, чем изучению начальной стадии разрушения, хотя она во многих случаях может определять долговечность детали. Что же касается влияния поверхностно-активных и коррозионных сред на кинетику усталостного разрушения металлов, то в силу сложности протекающих процессов этот вопрос не получил еще достаточного развития, а имеющиеся в литературе данные зачастую противоречивы.  [c.76]

Исследования в области механики контактных взаимодействий, химических и диссипативных процессов в поверхностных и приповерхностных слоях трущихся материалов показывают, что материал в указанных зонах в процессе трения резко изменяет свое физическое состояние, меняя механизм контактного взаимодействия. Происходят существенные изменения в суб- и микроструктуре приповерхностных микрообъемов. Изучение кинетики структурных, фазовых и диффузионных превращений, прочностных и деформационных свойств активных микрообъемов поверхности, элементарных актов деформации и разрушения, поиск численных критериев оптимального структурного состояния, оценок качества поверхности должны быть фундаментальной основой в поисках материалов и сред износостойких сопряжений. В настоящее время исследованы закономерности распределения пластической деформации по глубине поверхностных слоев металлических материалов, кинетика формирования вторичной структуры, процессы упрочнения, разупрочнения, рекристаллизации, фазовые переходы, которые, в свою очередь, зависят от внешних механических воздействий, состава, свойств трущихся материалов и окружающей среды. Важное значение в физике поверхностной прочности имеет определение связи интенсивности поверхностного разрушения при трении и величины развивающейся пластической деформации. Сложность указанной проблемы заключается в двойственности природы носителей пластической деформации. Дислокации, дисклинации и другие дефекты структуры являются концентраторами напряжений, очагами микроразрушения. В то же время движение дефектов (релаксационная микропластичность) приводит к снижению уровня напряжений концентратора, следовательно, замедляет процесс разрушения. Условия деформации при трении поверхностных слоев будут определять преобладание одного из указанных механизмов, от которого будет зависеть интенсивность поверхностного разрушения. Межатомный масштаб связан с характерным сдвигом, производимым элементарными носителями пластической деформации (дислокациями). В легированных металлических системах величина межатомного расстоя-  [c.195]

Центральный вопрос кинетики конденсации — это вопрос о скорости образования зародышей критического размера и их дальнейшем росте. Увеличение размеров капелек, достигших и перешагнувших критический барьер, ведет к разрушению метастабильного состояния системы, а следовательно, к изменению параметров пара и отклонению распределения зародышей по размерам от равновесных значений. В то же время закономерности, описывающие результаты флуктуации плотности, получены исходя из того условия, что температура, давление и число молекул паровой фазы сохраняются стабильными. Для того, чтобы полученные соотношения могли быть использованы в условиях нестационарного распределения, требуется ввести соглашения, сводящие действительный процесс к искусственной квазистационарной схеме. Принимается, что капельки с числом молекул, несколько превышающим критическое, удаляются по мере их образования из системы и заменяются эквивалентным количеством отдельных молекул в такой системе состояние пара сохраняется стабильным.  [c.130]


Влияние частоты наложенных деформаций и, что не менее важно, скорости нагружения в условиях двухчастотного нагружения может быть проиллюстрировано па примере сопоставления рассмотренных выше результатов и экспериментальных данных, полученных при двухчастотном нагружении этой же стали с формой циклов, представленной на рис. 4.19, е, когда частота низкочастотного нагружения (включая время выдержек), температура, а также уровни максимальных и высокочастотных напряжений оставались прежними, а частота а,,, составляла /2 = 30 Гц, что соответствовало соотношению частот = 18 000. Характер развития деформаций в этих условиях показан на рис. 4.27. Важно, что их кинетика в основном подобна изменению соответствующих характеристик при нагружении с меньшим соотношением частот (см. рис. 4.25). Как и в последнем случае, полная ширина петли гистерезиса б после уменьшения в первые циклы нагружения вследствие упрочнения материала в дальнейшем несколько стабилизируется, а затем начинает увеличиваться (рис. 4.27, а), но интенсивность разупрочнения материала в этом случае существенно ниже, чем при нагружении с/2//1 = 80. Активная же составляющая циклической пластической деформации бд вплоть до разрушения остается на установившемся уровне для всех исследованных напряжений. В связи с этим увеличение с числом циклов полной ширины петли следует отнести за счет деформации циклической ползучести которая также непрерывно увеличивается после начальной стадии нагружения (рис. 4.27, 6). Если сравнить ее абсолютные значения для одних и тех же уровней максимальных напряжений двухчастотного нагружения при /2 /1 = 18 000 и /2//1 = 80 с нагружением по трапецеидальной форме циклов, принимая во внимание при этом закономерности взаимосвязи диаграмм циклического деформирования по про-  [c.96]

Исследование закономерностей длительного малоциклового деформирования и разрушения связано с изучением диаграмм циклического деформирования и определением изменения механических свойств конструкционных материалов в зависимости от температуры и времени нагружения, а также получением данных о кинетике-полей деформаций элементов конструкций и формулировкой условий прочности с учетом температурно-временных эффектов применительно к режимам нестационарного малоциклового нагружения изделий.  [c.95]

Суш.ественного прогресса в исследовании научных основ явления усталости металлов следует ожидать лишь на основе целенаправленных объединенных усилий специалистов различного профиля, в первую очередь специалистов в области механики твердого деформируемого тела, физики, материаловедения, химии и т. п. Развитие исследований по изучению явления усталости металлов в последние годы можно охарактеризовать как разработку отдельных весьма важных аспектов проблемы усталости металлов. Из таких исследований следует отметить применение теории несовершенств реальных кристаллических тел для объяснения закономерностей возникновения усталостных треш,ин на микроскопическом уровне, разработку теории предельного состояния тел с усталостными треш.инами, статистических теорий усталостного разрушения, теории циклической пластичности применительно к малоцикловой усталости, а также разработку методов оценки усталостного повреждения и кинетики его развития на основе исследования неупругости металлов.  [c.3]

Изложены простейшие прикладные варианты теории неупругости, которые могут быть использованы для исследования закономерностей деформирования и разрушения материала при сложном неизотермическом нагружении, а также для расчетов кинетики напряженно-деформированного состояния и прогнозирования ресурса конструкций высоких параметров.  [c.1]

В монографии изложена теория длительного разрушения изотропных и анизотропных вязко-упругих тел, основанная на исследовании кинетики докритического роста трещин при постоянных и переменных нагрузках. Сформулированы модели разрушения вязко-упругих тел. Получены определяющие уравнения развития трещин на различных этапах их развития и разработаны методы решения этих уравнений. Изучены закономерности нестационарного развития трещин в вязко-упругих телах. Даны оценки долговечности изотропных и анизотропных вязко-упругих пластин, ослабленных трещинами.  [c.2]

Количественные эмпирические закономерности кинетики разрушения были получены преимущественно для режимов ползучести (для этого же случая развиты и обосновывающие их теории) в жестких застеклованных полимерах, разрушающихся при небольших деформациях, опыты обычно проводились при заданной нагрузке (постоянном условном напряжении) для высокоэластических материалов (каучуков и вулканизатов) в связи с большими деформациями режим постоянства так называемого истинного напряжения о обеспечивался применением специальных корректировочных приспособлений [4, 210, 462, 463], принцип действия которых основывается на предположении о неизменности объема материала при деформации. В этом случае для простого растяжения условное (рассчитанное на единицу начального поперечного сечения образца 5) растягивающее напряжение / = связано с истинным напря-  [c.187]

Мультифрактальность и самоафинность рельефа излома подразумевает обоснование выбора метода определения размерности с учетом известных кинетических закономерностей роста усталостных трещин. Значение фрактальной размерности может находиться в интервале i < Оу<2я2< Dy<3 при описании извилистости траектории линии трещины или поверхности разрушения соответственно. Вопрос об использовании того или иного значения фрактальной размерности может быть решен на основе известных закономерностей кинетики роста усталостных трещин в металлах. Поэтому перейдем к рассмотрению единого синергетического описания этого процесса с использованием фрактальной размерности.  [c.264]

Анализ закономерностей роста усталостных трещин при высокой асимметрии цикла показал, что при разном сочетании уровней асимметрии цикла и максимального напряжения могут быть реализованы кинетически эквивалентные процессы разрушения материала (рис. 6.12). Увеличение асимметрии цикла нагружения в пределах 10 % парировало по СРТ, увеличение максимального напряжения цикла на 50 % — при прочих равных условиях. Аналогичные результаты по определению влияния параметров нагружения на кинетику разрушения титановых сплавов было получено  [c.303]

Глава I монографии посвяш.ена изложению фундаментальных вопросов проблемы усталости металлов, в первую очередь при многоцикловом нагружении. Изучаются особенности деформирования и разрушения металлов при малоцикловом и многоцикловом нагружениях. Приводятся результаты исследования структурных изменений в металлах при циклическом нагружении. Анализируется влияние конструктивных, эксплуатационных и технологических факторов на величину предела выносливости конструкционных сплавов. Излагаются феноменологические теории усталостного разрушения металлов. Описываются обш,ие представления о кинетике развития усталостных треш.ин и критериях перехода от стабильного к нестабильному распространению треш ин. Приводятся некоторые данные о закономерностях усталостного разрушения металлов при комплексном воздействии различных повреждаюш их факторов.  [c.3]


Кинетические закономерности разрушения могут бьггь выявлены путем математического моделирования ударно-волновых процессов в разрушаемой среде. При согласии результатов моделирования с широким набором измеренных профилей скорости свободной поверхности можно с известной точностью утверждать, что использовавшееся в расчетах описание кинетики разрушения правильно отражает количественную сторону процесса. Такой подход применяется достаточно широко, однако, в силу неполноты теории, всегда имеются определенные затруднения в выборе кинетических уравнений и значений параметров, характеризующих конкретный материал. Для получения количественной информации о кинетических закономерностях разрушения непосредственно из анализа экспериментальных данных необходимо установить, как детали профиля скорости свободной поверхности связаны со скоростью разрушения и ее изменениями.  [c.169]

Механич. теория, исходящая из условия (1), описывает конечную стадию разрушения, па к-рой основную роль играет внешнее напряжепие, а тепловое движение может быть формально учтено темп-рной зависимостью поверхностной энергии а + Ор. Закономерности предшествующих стадий, когда зарождение трещин и их подрастание до критич. размеров определяется в основном ие внешними, а виутр. напряжениями и темп-рой, значительно глубже связаны с кинетикой разрушения и требуют для своего объяснения иного подхода.  [c.236]

Практические применения акустической эмиссии чрезвычайно разнообразны. Однако главной областью применения акустической эмиссии в настоящее время является неразрушающий и оперативный контроль инженерных конструкций и сооружений. Основным достоинством методов неразрушающего контроля с использованием акустической эмиссии, делающих их особенно ценными, является тот факт, что эта эмиссия сопровождает только развивающиеся, т. е. наиболее опасные дефекты. Другая привлекательная сторона применения акустической эмиссии связана с тем, что источником звука, и притом довольно мощного, в этом случае являются сами дефекты, благодаря чему задача обнаружения и локализации дефекта (источника акустической эмиссии) значительно облегчается [63, 64]. В частности, для этой цели могут использоваться методы, ранее развитые в сейсмологии, например метод триангуляции. Большая практическая ценность акустической эмиссии вызвала резкий всплеск активности исследований в этом направлении, главным образом экспериментальных, в результате чего за относительно короткий период времени методы контроля, основанные на акустической эмиссии, получили широкое распространение в тех областях, где выход изделия из строя влечет за собой катастрофическое разрушение. К наиболее важным областям использования акустической эмиссии относятся ядерная энергетика, морской и воздушный транспорт, трубопроводы. Разумеется, весьма велико значение ее и для чисто физических исследований, так как сигналы эмиссии могут дать важные сведения о динамике дислокаций, закономерностях движения 1рещин, кинетике разрушения и т. д.  [c.279]

Для курса сопротивления материалов, отражающего развитие механики деформируемого твердого тела и усовершенствование расчета на прочность современных конструкций, все более актуальным становится освещение вопросов механики разрушения как основы оценки несущей способности по сопротивлению хрупкому и усталостному разрушению. Эти критерии несущей способности в свете закономерностей распространения макроразру-щения входят в тесную связь между собой, существенно углубляя представления о кинетике образования предельных состояний и запаса прочности в процессе исчерпания ресурса при работе изделий.  [c.3]

Из сопроводительной документации следовало, что вертолетом Ми-8МТВ-1 в предыдущий день перед разрушением лопасти в полете было осуществлено 18 полетов со средней продолжительностью 20 мин. Это означает, что число полетов по результатам измерения шага усталостных бороздок составляет 7-10. Очевидна близость длителт.-ыости и кинетики роста сквозной усталостной трещины по результатам макроскопической оценки числа сформированных блоков усталостных линий и по результатам измерений шага усталостных бороздок. Следует подчеркнуть, что эти оценки занижены по отношению к полному периоду распространения сквозной трещины в пределах одного-двух полетов. При формировании блоков усталостных линий происходило частичное торможение трещины, что выражается в снижении шага усталостных бороздок. Поскольку при переходе от несквозной трещины к сквозной величина измеренного шага мала, снижение скорости роста трещины при формировании усталостных линий на этой стадии роста могло быть таким, что некоторый период времени трещина вообще не распространялась после возникавшей перегрузки. Поэтому оцененное число циклов не охватывает всей полноты информации и закономерности продвижения и частичной остановки трещины после кратковременных перегрузок.  [c.661]

Сформулированные выше основные закономерности малоциклового деформирования и разрушения необходимы в связи с разработкой методов оценки прочности элементов конструкций. Для обоснования расчетной процедуры и уточнения запасов прочности в инженерной практике проводятся мснытанвя моделей и натурных элементов. Основными задачами, которые решаются в таких испытаниях, являются сопоставление расчетного и экспериментального распределения деформаций и напряжений (особенно в зонах концентрации с учетом поциклового перераспределения), а также изучение условий достижения предельного состояния по разрушению (образованию трещины). При этом для оценки прочности в условиях циклического упругопластического деформирования необходимы данные о кинетике деформированного состояния конструкции, а также кривые малоцикловой усталости материала при однородном напряженном состоянии.  [c.135]

Экспериментально установлены и теоретически обоснованы новые свойства и закономерности разрушения металлов. Металлическое тело повреждается по мере накопления в деформируемых объемах внутренней энергии и разрушается, когда плотность накопленной внутренней энергии достигает предельной (критической) величины. Критическая плотность внутренней энергии и, не зависит от условий процесса, является физической константой материала, хорошо совпадающей с известным термодинамическим свойством металлов АЯтв- Получено и экспериментально обосновано кинетическое уравнение состояния (4), интегрально описывающее кинетику повреждаемости деформируемого материала. Показана общность и перспективность термодинамического подхода к прогнозированию закономерностей повреждаемости и усталостного разрушения металлов.  [c.423]

На основании анализа и обобщения многочисленных собственных и описанных в литературе результатов исследований развития усталостных трещин в сталях, алюминиевых, титановых и магниевых сплавах, представленных в виде диаграмм усталостного разрушения (зависимостей скорости роста трещины от размаха или наибольшего значения коэффициента интенсивности напряжений), формулируются общие закономерности этого процесса и обсуждаются типичные отклонения от них. Устанавливаются параметры, позволяющие количественно характеризовать циклическую трсщипостопкость материала и воспроизвести диаграмму его усталостного разрушения. В этой связи рассматриваются различные математические модели кинетики роста трещины и оценивается статистическими методами их соответствие эксиерименту.  [c.429]

Экспериментальные данные, характеризующие кинетику изменения силовых параметров термоциклического деформирования в исследуемых материалах приводят к весьма важному выводу. Так как для всех исследуемых напряженных состояний нормальные и касательные х у напряжения остаются практически постоянными или изменяются однотипно вплоть до разрушения, то можно считать, что в процессе проведения эксперимента отношение = Ла = onst, что согласуется с полученными ранее результатами [101. Исходя из этой экспериментально установленной закономерности, можно, принимая однородность плосконапряженного состояния и неизменность градиента температур в образце при всех уровнях деформации, обосновать техническую теорию прочности при термической усталости и построить обобщенную кривую термоциклического деформирования при сложнонапряженном состоянии.  [c.81]

А1, 1,2 Ti, Ni — ост.) от частоты нагружения при комнатной температуре в воде. В области высоких частот нагружения (>1 Гц) наблюдается зависимость скорости dlldN от числа циклов нагружения, она такая же, как и на воздухе. В отличие от этого в области низких частот нагружения проявляется зависимость только от времени нагружения наблюдается полностью интеркристал-литное разрушение, т. е. закономерности распространения трещины аналогичны приведенным на рис. 6.27—6.29. Однако рассматриваемый случай — это случай коррозионной усталости, ползучесть не оказывает влияния на кинетику процесса. Ниже описаны результаты исследования на основе нелинейной механики разрушения, приведенного с целью объяснения характерных особенностей распространения трещины при зависящей от времени высокотемпературной малоцикловой усталости с учетом циклического изменения деформации ползучести.  [c.215]


Обобщение результатов исследований закономерностей стабильного и нестабильного развития усталостных трещин, характеристик вязкости разрушения конструкционных сплавов различных классов при статическом, циклическом и динамическом нагружениях при различных температурах и вариантах термической обработки образцов различных толщин, изложенных выше, позволило предложить и обосновать модель разрушения конструкционных сплавов с трещинами при циклическом нагружении fl65], которая учитывает влияние цикличности нагружения на изменение реологических свойств материала в пластически деформируемой зоне у вершины трещины и динамический характер распространения трещины после ее страгивания. Модель позволяет прогнозировать соотношения значений характеристик вязкости разрушения при различных видах нагружения и кинетику нестабильного развития усталостных трещин для материалов различных классов в зависимости от режимов циклического нагружения.  [c.210]

Приведенные в работе данные, их обобщение и анализ представляют основу для дальнейшего развития как теоретических, так и экспериментальных исследований в области а) разработки новых физических моделей процесса хрупкого разрушения, основанных не на традиционных схемах неоднородности дислокационной структуры, а за счет реализации различного рода локальной неоднородности распределения ансамбля кластеров из точечных дефектов различной мощности и природы б) изучения основных закономерностей эволюции дислокационной структуры при испытаниях на длительную и циклическую прочность и физической природы усталости металлических и неметаллических материалов в различном диапазоне напряжений и температур в) расшифровки и интерпретации данных по низкотемпературному внутреннему трению металлических и неметаллических материалов и идентификащи их механизмов с учетом возможного влияния чисто методических эффектов (обусловленных спецификой метода и режима испытаний) на характер получаемой информации, а также выявления физической природы механизма старения материала тензодатчиков в процессе их эксплуатации г) получения количественной информации о кинетике, механизме и энергетических параметрах низкотемпературной диффузии (энергии образования и миграции вакансий и междоузлий, значения их равновесных концентраций и др.) д) развития теоретических основ и соз-  [c.8]

Выявленная закономерность формирования морфологии макрорельефа в направлении роста трещины позволяет интерпретировать кинетику усталостного разрушения следующим образом. В процессе нестационарного нагружения в изломе формируется группа макроусталостных линий, а в период установившегося режима происходит продвижение трещины с формированием гладкой зоны излома. На этапе ускоренного и нестабильного роста усталостн ой трещины появление числа макролиний большего, чем на этапе ее равномерного развития, может быть объяснено возрастанием чувствительности материала к тем циклам нагружения, которые ранее (на этапе стабильного роста трещины) не приводили к формированию макроусталостных линий. Помимо этого в период нестабильного роста трещины возможно чередование этапов дискретного статического проскальзывания усталостной трещины и последующего ее подрастания по механизму ускоренного усталостного разрушения. В последнем случае на изломе формируются небольшие по протяженности зоны с разной шероховатостью, между которыми имеется макроскопически четкая граница, отвечающая смене механизма роста трещины. Общее число блоков нагружения при росте сквозной трещины соответствует 6.  [c.318]


Смотреть страницы где упоминается термин Закономерности кинетики разрушения : [c.235]    [c.180]    [c.346]    [c.131]    [c.90]    [c.160]    [c.4]    [c.75]    [c.8]   
Основы прогнозирования механического поведения каучуков и резин (1975) -- [ c.187 ]



ПОИСК



Кинетика



© 2025 Mash-xxl.info Реклама на сайте