Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Метод аналогий по напряжениям

Наиболее сложными являются задачи экспериментального изучения распределения деформаций, и напряжений в деталях машин и элементах сооружений. Эти задачи возникают по разным причинам. Одна из них состоит в том, что в коиструкциях современных машин ответственные детали имеют настолько сложную конфигурацию, что теория сопротивления материалов далеко не всегда может дать исчерпывающий ответ на вопрос об их прочности. В таких случаях на помощь приходит изучение напряженного состояния детали или ее модели путем применения специальных экспериментальных методов исследования деформаций и напряжений. К их числу относятся тензометрия, поляризационно-оптический метод, рентгенометрия, метод лаковых (хрупких) покрытий, метод аналогий (мембранной, электрической, гидродинамической и пр.).  [c.6]


Одними из методов определения напряженного состояния элементов сложной геометрической формы, работающих в неоднородном и сложном напряженном состоянии в неравномерном температурном поле, являются методы аналогий. Основная суть этих методов заключается в том, что различные по своей физической природе явления описываются одинаковыми уравнениями. Рассмотрим эти методы, сгруппировав их по типу уравнений, используемых для описания характерных физических процессов и явлений.  [c.79]

Распределение касательных напряжений в сечении при изгибе может быть найдено экспериментально по методу аналогии — см. [4].  [c.87]

Распределение касательных напряжений в сечении сложной формы при изгибе может быть найдено экспериментально по методу аналогии — см. гл. XVI и [12].  [c.78]

Для анализа акустических систем разработан метод электроакустических аналогий. По этому методу давление р считают аналогом напряжения, скорость колебаний v — аналогом плотности тока, а объемную скорость колебаний i/a (w 5 — поперечное сечение звукопровода) — аналогом тока. Для трубки длиной / акустическая масса  [c.52]

Для анализа акустических систем разработаны метод и система электроакустических аналогий. По этому методу давление считают аналогом напряжения, скорость колебаний v — аналогом плотности тока, а объемную  [c.66]

Б л о X В. И., Прибор для изучения напряжений при кручении по методу аналогии Прандтля, Труды конференции по оптическому методу изучения напряжений, ОНТИ, 1937.  [c.360]

Для анализа АС, кроме метода электромеханических аналогий, описанного 1, часто используется при расчетах и метод электроакустических аналогий. По этому методу аналогом звукового давления р считают напряжение и, аналогом колебательной скорости V — плотность тока д, а аналогом объемной скорости колебаний 1 5 — ток 1.  [c.91]

По аналогии со сказанным, и в методе напряжений в качестве основных разрешающих уравнений принимаются геометрические уравнения в форме уравнений Сен-Венана II — уравнений совместности деформаций. Шесть указанных уравнений надо выразить через  [c.45]

Поставленную задачу будем решать в напряжениях полуобратным методом Сен-Венана. По аналогии с известной из сопротивления материалов задачи кручения бруса круглого поперечного сечения допустим, что  [c.132]


Развитые математические методы расчета раскрытия берегов трещины позволяют в большей мере учесть многофакторную ситуацию влияния асимметрии цикла нагружения, при условии ввода более сложных поправочных функций [59, 60], чем были представлены выше. В предлагаемых соотношениях одновременно учитывается роль максимального напряжения цикла, флуктуации влияния асимметрии цикла при разных СРТ, а главное, рассматривается дифференцированный подход в кинетическом описании процесса усталостного разрушения путем введения коэффициента перенапряжения р, учитывающего стеснение пластической деформации вдоль фронта трещины. Его величина отражает изменение размера зоны пластической деформации, что может быть рассмотрено по аналогии с введенным в кинетические уравнения  [c.307]

Установки для исследований напряжений по методу мембранной аналогии были широко распространены в первой половине нашего столетия, когда еще не получили столь широкого распространения вычислительные машины и установки, использующие электрическую аналогию.  [c.88]

Ф и г. 8.12. Общий вид плоской модели с электропроводящей бумагой для определения сумм главных напряжений по методу электрической аналогии.  [c.225]

Рассмотрим модель для расчета нагрузок выпарных установок с пароотбором и добавками пара . На рис. 44 представлена схема модели для установки с отборами, в которой потоки пара моделируются электрическими напряжениями цепи. На рис. 45 представлены схемы выпарной установки и ее электрического аналога при регулировании установки путем добавок пара Ах и А а- Потокам пара в этой модели эквивалентны токи в цепи. Моделирование осуществляется методом последовательных приближений. На рис. 46 представлена схема модели выпарной установки, выполненная по схеме па рис. 44.  [c.95]

Пусть нужно установить закон распределения напряжений в заданном сечении вала. Для этого на контур такого же очертания натянем пленку, которая нагружена равномерно распределенным давлением. Мысленно сделав несколько разрезов пленки, мы определим изменение угла наклона касательной к поверхности пленки по сечению. В соответствии с мембранной аналогией распределение касательных напряжений по сечению будет таким же. Заметим, что при помощи мембранной аналогии можно получить не только качественные, но и количественные результаты. Более подробно этот метод изложен в специальной литературе.  [c.186]

На примере расчета статически неопределимых систем проявляется формальная аналогия между решением задач упругости и решением задач пластичности методом переменных параметров упругости для стержней. В характеристику жесткости сечения стержня в упругом случае вносят поправку с помощью интегральной функции пластичности при упругопластическом деформировании задачу решают в деформациях, а не в напряжениях (усилиях), если приходится находить решение методом последовательных приближений. Например, теорему о трех моментах для многопролетных неразрезных балок при упругопластическом деформировании по ана-  [c.46]

Заканчивая рассмотрение вопроса аналогий, кратко обсудим другой приближенный метод решения задач теории упругости. Э от метод основан на замене дифференциальных уравнений этих задач уравнениями в конечных разностях и решении этих уравнений численно методом последовательных приближений. Впервые этот метод был использован К. Рунге ), который таким образом решил сложную задачу кручения. В дальнейшем больших успехов достиг Л. Ричардсон, применивший этот метод к решению двумерных задач теории упругости и рассмотревший в качестве примера напряжения в дамбах от действия сил тяжести и давления воды ). В по-  [c.670]

Многие инженеры, а их, по-видимому, большинство, рассчитывают динамические характеристики сравнительно сложных систем с помощью аналогий. Одной из наиболее распространенных является аналогия подвижности Файрсто-уна. В соответствии с методом Файрстоуна, который по существу является обратным так называемому методу аналогий импедансов, напряжение выбирается в качестве аналога скорости, а ток — как аналог момента или силы. Таким образом пружина заменяется индуктивностью, а масса — емкостью. Поскольку массы относятся к инер-циальному пространству, то их аналоги — конденсаторы имеют одну обкладку заземленной. Эквивалентная схема системы соответствует схеме, приведенной на фиг. 4.14,в. Размерность индуктивностей может быть дана в рад/см-кГ вместо генри, а размерность емкостей — в см-кГ-сек вместо фарад, поскольку это позволяет перейти к любой системе единиц.  [c.146]


Наиболее эффективными методами наблюдения концентрации напряжений являются методы фотоупругости и фотопластичности. Пропускание через образцы из специальных смол или пластиков поляризованного света создает вокруг концентраторов напряжений интерференционный узор. Определение напряжений по интерференционному узору требует применения более сложного математического аппарата по сравнению с прямыми аналитическими расчетами, так как необходимо учитывать еще двойное лучепреломление [1]. Аналогия поля напряжений с магнитными или электростатическими полями основана на схожести основных математических уравнений, описывающих эти свойства материала.  [c.20]

Точное решение задачи о кручении брусьев более сложного поперечного сечения методами теории упругости требует значительной вычислительной работы. Однако Л. Пранд-тлем было отмечено совпадение математических формулировок задач о кручении бруса и о деформации под равномерным давлением мембраны, натянутой на плоский контур, одинаковый по форме с контуром поперечного сечения бруса. Не вдаваясь здесь в подробности математической формулировки этих задач, отметим только, что согласно этой аналогии, которая названа мембранной (пленочной) аналогией, касательные напряжения в брусе пропорциональны углам наклона касательных к поверхности мембраны, а крутящий момент пропорционален объему между поверхностью мембраны и плоскостью контура, на который она натянута. Последнее обстоятельство позволяет сравнивать жесткости сечений различных форм. Они, учитывая формулу (6.4.6), будут соотноситься как эти объемы для аналогичных мембран. Таким образом, сравнивая объемы при деформации мембраны на сложном контуре V и круглом контуре Vo (разумеется, при одинаковых усилиях натяжения мембраны и равных величинах давлений), мы можем найти геометрический фактор жесткости сложного сечения  [c.139]

Для анализа акустических систем разработан метод электроакустических аналогий. По этому методу давление р считают аналогом напряжения, скорость колебаний V — аналогом плотности тока, а объемную скорость колебаний 7а — = и5 (где 5 — поперечное сечение звукопровода)—аналогом тока. Для трубки длиной I акустическая масса гпц = = р//5 и акустическое активное сопротивление Гц=Гк18 . Для объема V акустическая гибкость Са=См52= l//YPa. . Методом этих аналогий удобно пользоваться при рассмотрении устройств, состоящих только из акустических систем, например акустических фильтров. Комбинации из акустических и механических систем можно рассматривать и с помощью электроакустических аналогий. При этом все механические сопротивления надо заменять на соответствующие им акустические, а силы и скорости— на давления и объемные скорости по формулам 2а = 2м/5-м, р = О =  [c.76]

Метод аналогий широко применяется в различных областях науки, в том числе для исследования напряжений и деформаций. Основан он на подобии двух различных по своей природе явлений. Так, например, расположение силовых линий касательных напря-  [c.141]

К достоинствам метода относятся простота электрической схемы и способа измерения искомых напряжений, а также большая точ ность полученных результатов. Исследования показали [100], что ошибка в определении температуры по этому методу практическ возникает только при аппроксимации дифференциального уравне ния теплопроводности уравнением в конечных разностях и резуль таты, полученные при численном решении, совпадают с экспери ментальными результатами. Более подробно с методом электриче ской аналогии можно ознакомиться в специальной литературе [37]  [c.102]

Основная, пожалуй, задача, на которой были сосредоточены в последние годы усилия ученых-механиков, занимающихся практическими приложениями механики разрушения к оценке прочности крупногабаритных изделий,— это задача о нахождении условий равновесия или распространения большой трещины в достаточно пластичном материале. Пластическая зона впереди трещины велика настолько, что для нее можно считать справедливыми соотношения макроскопической теории пластичности, рассматривающей среду как сплошную и однородную. Для плоского напряженного состояния модель Леонова — Панасюка — Дагдейла, заменяющая пластическую зону отрезком, продолжающим трещину и не имеющим толщины, оказывается удовлетворительной. В частности, это подтверждается приводимым в этой книге анализом соответствующей упругопластической задачи, которая ре- шается численно методом конечных элементов. С увеличением числа эле-ментов пластическая зона суживается и можно предполагать, что в пределе, когда при безграничном увеличении числа элементов решение стремится к точному решению, пластическая зона действительно вырождается в отрезок. Заметим, что при рассмотрении субмикроскопических трещин на атомном уровне многие авторы принимают гипотезу о том, что нелинейность взаимодействия между атомами существенна лишь в пределах одного межатомного слоя, по аналогии с тем, как рассчитывается так называемая дислокация Пайерлса. Онять-таки, как и в линейной теории, возникает формальная аналогия, но здесь она носит уже искусственный характер, и суждения об относительной приемлемости модели в разных случаях основываются на совершенно различных соображениях степень убедительности приводимой Б защиту ее аргументации оказывается далеко неодинаковой.  [c.10]

Другим примером может служить тождественность дифференциальных уравнений, вырал<ающих закон распределения касательных напряжений по поперечному сечению скручиваемого стержня, дифференциальным уравнениям упругой поверхности мембраны, натянутой на конкретный контур и подвергнутой равномерно раюпределенному давлению. Эта тождественность лежит в основе получившего распространение метода мембранной аналогии, при использовании которого в пластинке выреза-  [c.7]


Путем сопоставления рабочего цикла, определяемого координатами рабочей точки (Р. Т), с некоторым предельным циклом могут быть определены запасы прочности турбинного диска по отношению к двум опасным состояниям (знакопеременное течение, приводящее к термоусталости, и прогрессирующее нарастание деформации, результатом которого может быть нарушение работоспособности конструкции или разрушение статического типа). Аналогия между диаграммой приспособляемости (рис. 71) и известной диаграммой предельных амплитуд напряжений (эта аналогия будет наиболее полной, если линию, определяющую условия знакопеременного течения, построить для температурных циклов при со = onst) позволяет использовать некоторые соображения и методы, принятые в расчетах на выносливость [120, 151, 158].  [c.157]

Методика исследования и проведение эксиеримеита. Подробное изучение распределения напряжений в квадратной пластине с круглым отверстием в центре, по контуру которого приложено равномерное давление, было проведено поляризационно-оптическим методом, а также с помощью хрупких покрытий и электрической аналогии. Поляризационно-оптический метод позволил получить картину полос интерференции, дающую по всему полю наибольшие касательные напряжения и напряжения на ненагру-женном контуре. На электрической модели из электропроводной бумаги находили линии одинаковых сумм главных напряжений (изопахи). С помощью хрупкого покрытия были определены направления главных напряжений. Распределение напряжений было изучено в 5 пластинах с разным отношением диаметра отверстия к длине стороны пластины (D/a) [16].  [c.258]

Так как поляризационно-оптический метод дает только разность главных напряжений, за исключением контуров, где одно из напряжений известно, еще одно необходимое соотношение между главными напряжениями в виде сумм главных напряжений было получено с помощью электрической аналогии. Контур модели из электропроводной бумаги был разделен на участки, к каждому из которых прикладывали потенциал, пропорциональный сумме главных напряжений на данном участке контура. Суммы главных напряжений на контуре определяли по данным поляризационно-оптического метода. Между контуром модели и электродами из медной фольги была оставлена полоса бумаги шириной около 3 мм. На этом расстоянии приложенные потенциалы сглаживались, так что их распределение на контуре ближе соответствовало непрерывному распределению напряжений, имеющемуся на контуре модели из оптически чувствительного материала. Картина изопах для одной из моделей воспроизведена на фиг. 9.29.  [c.259]

Уравнение (3.18) решается методом последовательных приближений, для которого достаточное условие сходимости Д < 1, (где - И - норма в L-i i В - интегральный оператор уравнения (3.18)) априори выполняется ввиду полной аналогии метода последовательных приближений для (3.18) и альтернирующего процесса (3.15). Возможность решить задачу восстановления напряженного состояния в объеме упругого тела по экспериментальным данным на части его поверхности как корректную задачу основывается на априорной информации о принадлежности искомого решения компактному множеству корректности - множеству ограниченных вектор-функций, удовлетворяющих системе (3.6). Изложенный подход к решению поставленной задачи может быть полностью использован при  [c.77]

Широко распространенные традиционные методы, основанные на балочной аналогии, явно неудовлетворительны по точности. Применение так назьшаемых точных методов с использованием интегральных и дифференциальных уравнений в большинстве случаев ограничивается очень простыми элементами типа пластинки и бруска и невозможно для сложных произвольных конструкций. Поэтому при проектировании самолета Ил-86 совместно с ЦАГИ и другими научными коллективами проведена большая работа по оценке современных отечественных и зарубежных методов расчета. Окончательно был выбран МКЭ в перемещениях, при котором число независимых переменных получается довольно большим и может составлять в зависимости от задачи десятки тысяч. Повышая дробность разбиения конструкции на элементы, можно получить любую требуемую точность определения напряженно-деформируемого состояния конструкции.  [c.49]

Для решения дифференциального уравнения Лапласа (81) может быть также применен экспериментальный метод электрической аналогии. В электрической модели с напряжениями, создаваемыми на контуре, распределение потенциалов внутри поля удовлетворяет уравнению Лапласа. Чаще всего плоскую электрическую модель изготавливают из электропроводной бумаги и исследуют на установках типа ЭГДА [16]. Этот метод позволяет определять величины сумм главных напряжений + Ог внутри контура модели, что в сочетании с данными поляризационно-оптического метода Oj — 02 дает возможность получать раздельно главные напряжения и (Ja-Линии равных сумм главных напряжений Oj + (jg (изопахики) могут быть определены и при помощи оптического прибора — интерферометра как линии равных приращений толщины модели. Интерферометр ИТ [17] позволяет определять Oj + на материалах с малой оптической чувствительностью (типа органического стекла). В результате наложения интерференционных картин в модели до и после ее загружепия образуются муаровые полосы, являющиеся изопахиками. При работе с оптически чувствительными материалами типа эпоксидных смол этот интерферометр с введенным в его схему анализатором позволяет определять абсолютную разность хода лучей, поляризованных в плоскостях, соответствующих напряжениям и Ог. Главные напряжения определяют в этом случае по отдельности через абсолютные разности хода  [c.69]

Колебат. механич. системами Э. п. могут быть стержни, пластинки, оболочки разл. формы (полые цилиндры, сферы, совершающие разл. вида колебания), механич. системы более сложной конфигурации. Колебат. скорости и деформации, возникающие в системе под воздействием сил, распределённых по её объёму, могут, в свою очередь, иметь достаточно сложное распределение. В ряде случаев, однако, в механич. систем можно указать элементы, колебания к-рых с достаточным приближением характеризуются только кинетич, и потенц. энергиями и энергией механич. потерь. Эти элементы имеют характер соответственно массы М, упругости I / С и активного механич. сопротивления г (т.н. системы с сосредоточенными параметрами). Часто реальную систему удаётся искусственно свести к эквивалентной ей (в смысле баланса энергий) системе с сосредоточенными пара.меграми, определив т. н. эквивалентные массу Л/, , упругость 1 / С , и сопротивление трению / . Расчёт механич. систем с сосредоточенными параметрами может быть произведён методом электромеханич. аналогий. В большинстве случаев при электромеханич. преобразовании преобладает преобразование в механич, энергию энергии либо электрического, либо магн. полей (и обратно), соответственно чему обратимые Э.п. могут быть разбиты на след, группы электродинамические преобразователи, действие к-рых основано на электродинамич. эффекте (излучатели) и эл.-магн. индукции (приёмники), напр, громкоговоритель, микрофон электростатические преобразователи, действие к-рых основано на изменении силы притяжения обкладок конденсатора при изменении напряжения на нём и на изменении заряда или напряжения при относит, перемещении обкладок конденсатора (громкоговорители, микрофоны) пьезоэлектрические преобразователи, основанные на прямом и обратном пьезоэффекте (см. Пьезоэлектрики) электромагнитные преобразователи, основанные на колебаниях ферромагн. сердечника в перем. магн. поле и изменении магн. потока при движении сердечника  [c.516]


Методом мембранной аналогии установлено, что касательные напряжения в этом случае распределяются равномерно по толщине поперечного сечения (jpn .13.9a).  [c.189]

Обычно исходные величины напряжения и тока выбираются на основании имеющегося опыта (по аналогии), затем в процессе отладки процесса практически подбирается оптимальный вариант режима. За-груднИтельность установки оптимального режима для одного изделия, без предварительных проб является одним из частных недостатков метода, несущественных для массового производства.  [c.223]

Постановки и подходы к решению контактных задач методом граничных интегральных уравнений во многом сходны со схемами МКЭ. В частности, в работе [232] развиваются идеи использования последовательных и параллельных блочных методов по аналогии с МКЭ для задач контакта нескольких тел. Решены задачи анализа напряжений в резьбовых соединениях с использованием постоянных, линейных и квадратичных граничных элементов. Внимания заслуживает исследование особенностей использования МГИУ для осесимметричных задач при наличии угловых точек на границе. Приведенные расчеты демонстрируют высокую эффективность предлагаемого подхода.  [c.13]

По окончании своей докторской диссертации Прандтль работал некоторое время в промышленности. Скоро, однако, он вернулся к академической работе и уже в 1900 г. принял предложение занять кафедру инженерной механики в Ганноверском политехническом институте. К этому времени относится опубликование им важной работы о мембранной аналогии в задаче кручения ). Здесь он показывает, что все данные о распределении напряжений при кручении стержня могут быть получены экспериментально, путем использования аналогии с формой провисания мыльной пленки. Дальнейшая работа по этому вопросу была проведена впоследствии его учеником Антесом ). Практическая важность принципа аналогий была понята Гриффитсом и Тэйлором, применившими ) метод мыльной пленки для определения жесткости при кручении брусьев разнообразных сложных лрофилей.  [c.471]

Наиболее распространенными методами активации поверхности являются нагрев, деформация, использование высокоэнергетических частиц. Возможность термической активации ограничена деградацией механических свойств материалов, особенно при образовании адгезионного соединения материалов с существенно разными гомологическими температурами. Активация деформацией успешно применяется в процессах сварки трением, прессования порошковых материалов, гидроскальпирования и т. д., но не осуществима при нанесении защитных покрытий. Тяжелые высокоэнергетические частицы (прежде всего ионы) могут вызывать перемешивание на границе раздела с образованием переходного слоя. Формирование переходного слоя позволяет избежать опасных межфазных напряжений, связанных с различием кристаллических решеток, и значительно улучшает прочность адгезионного соединения. По имеющимся оценкам [211] при отсутствии перемешивания предельная разница межатомных расстояний однотипных решеток (в том числе и металлов) составляет примерно 15%. Приведенное значение близко к величине разницы атомных радиусов, фигурирующей f в правиле Юм-Розери для образования твердых растворов. рЕсли развить эту аналогию и воспользоваться результатами работы [63] для образования твердых растворов при ионной имплантации и перемешивании, то можно ожидать образования >я1рочных соединений у материалов с разницей межатомных расстояний, достигающей 40% при условии образования переходного слоя. Влияние легких частиц (у-кванты, электроны, нейтроны, легкие ионы) в первую очередь связано с возбуждением и перестройкой электронных оболочек [219].  [c.17]


Смотреть страницы где упоминается термин Метод аналогий по напряжениям : [c.223]    [c.68]    [c.325]    [c.103]    [c.217]    [c.65]    [c.461]    [c.114]    [c.116]    [c.296]    [c.121]    [c.113]   
Сопротивление материалов (1986) -- [ c.30 ]



ПОИСК



Аналог

Аналогий методы для решения задач распределения напряжений

Аналогия

Метод аналогии для исследования распределения напряжений

Метод аналогий

Метод напряжений

Плиты в плоском напряжённом состоянии Распределение напряжений - Исследование методом электрической аналогии

Шлицевые переменного диаметра - Скручивание Распределение напряжений - Исследование методом электрической аналогии



© 2025 Mash-xxl.info Реклама на сайте