Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Теория электромагнитного излучения

Из теории электромагнитного излучения вытекает, что период полураспада Т-/, у-активного ядра зависит от мультипольности перехода L и длины волны (т. е. в конечном счете от энергии кванта) следующим образом  [c.261]

Одним из наиболее эффективных методов определения характеристик нестабильных уровней является измерение угловых корреляций при каскадном испускании ядром v-квантов. Угловой корреляцией называется угловое распределение N (О) импульса одного каскадного кванта относительно другого (обычно предшествующего первому). Таким образом, в корреляционном опыте необходимо регистрировать по схеме совпадений (см. гл. IX, 6) два кванта, последовательно вылетающих из одного и того же ядра под различными относительными углами между их импульсами. Техника таких измерений сейчас разработана достаточно детально. Появление нетривиальной корреляционной зависимости связано с тем известным из теории электромагнитного излучения обстоятельством, что проекция т полного момента v-кванта на его импульс может принимать (разумеется, в единицах U) только значения m = 1. Значение т = О исключено условием поперечности электромагнитных волн. Поэтому, если, например, ядро на уровне с мо-  [c.266]


В этой главе мы сначала рассмотрим изолированное электромагнитное поле в вакууме, т. е. в отсутствие носителей зарядов и токов проводимости, порождающих источники в уравнениях поля. Мы выполним квантование этого поля. Исходным пунктом будет служить классическая теория электромагнитного излучения Максвелла, которая трактуется в 1.1.  [c.125]

В настоящей книге автор отошел от традиционного деления теоретической физики на разделы и теория рассеяния рассматривается параллельно в рамках классической теории электромагнитного излучения, классической механики частиц и квантовой механики. Мотивы для такого отказа от традиционного построения курса двоякого рода. Во-первых, очень полезно показать читателю, что в разделах физики, на первый взгляд совершенно различных, мы сталкиваемся с аналогичными явлениями. Во-вторых, во всех таких разделах можно использовать одни и те же математические методы и терминологию. Тридцать лет назад считалось необходимым всегда, когда это возможно, интерпретировать новое квантовое явление на языке более привычной электромагнитной теории. Автор берет на себя смелость утверждать, что в настоящее время многие физики лучше знакомы с квантовой механикой, чем с классической теорией излучения, и при изложении некоторых разделов электромагнитной теории часто оказывается методически полезным, наоборот, опираться на знания студентов в области квантовой механики.  [c.9]

Теория электромагнитного излучения 23  [c.23]

Теория электромагнитного излучения  [c.25]

Теория электромагнитного излучения 27  [c.27]

Теория электромагнитного излучения 31  [c.31]

Теория электромагнитного излучения 33  [c.33]

Теория электромагнитного излучения 35  [c.35]

Теория электромагнитного излучения 43  [c.43]

Теория электромагнитного излучения 53  [c.53]

Теория электромагнитного излучения 57  [c.57]

Теория электромагнитного излучения 59  [c.59]

Теория электромагнитного излучения 61  [c.61]

Теория электромагнитного излучения 65  [c.65]

Выдвижением своей гипотезы о дискретности энергетических состояний осциллятора Планк (1900 г.) заложил основу квантовой теории. Правда, при выводе своей формулы для спектральной плотности теплового излучения он приписывал свойства дискретности только нагретому телу, а не электромагнитному излучению.  [c.338]

Как было указано, Эйнштейн, развивая идею Планка, сделал второй шаг на пути развития квантовой теории, выдвинув новую гипотезу, согласно которой само электромагнитное излучение состоит из отдельных корпускул (квантов) — фотонов с энергией о = и импульсом р hv/ . Гипотеза Эйнштейна в дальнейшем была подтверждена многочисленными экспериментальными фактами и легла в основу объяснения ряда оптических явлений, с которыми не могла справиться волновая теория света.  [c.338]


При формулировке основных положений теории необходимо в первую очередь учесть поглощение электромагнитной волны, чего мы не делали при рассмотрении диэлектриков, предполагая, что сумма потоков энергии для отраженной и преломленной волн всегда равна потоку падающей энергии. Однако любая среда в большей или меньшей степени поглощает электромагнитное излучение, что ведет к затуханию электромагнитной волны, амплитуда которой будет постепенно уменьшаться. Для волны, распространяющейся вдоль оси 2, в слое малой толщины 2 поглощается определенная часть падающего света, пропорциональная толщине слоя (И——кМг. В соответствии с этим интенсивность света убывает по мере проникновения в поглощающую среду по закону  [c.26]

Современное учение о спектрах электромагнитного излучения базируется на квантовой теории, поэтому вначале остановимся на основных квантовых законах и понятиях.  [c.224]

Наглядное представление о происхождении колебательных спектров можно получить на основе классической модели колебания двухатомной молекулы. Согласно электромагнитной теории света, излучение и поглощение электромагнитной энергии связано с движущимися зарядами. Величина излучаемой и поглощаемой энергии зависит от изменения дипольного момента молекулы при ее колебании. Если дипольный момент при колебании не меняется, то излучения или поглощения энергии не происходит.  [c.97]

Рассмотрим сначала некоторые положения теории рэлеевского рассеяния света. Отметим, что в дальнейшем речь будет идти о рассеянии света в низкомолекулярных однородных и изотропных жидких системах, т. е. мы исключаем из рассмотрения растворы высокомолекулярных соединений, жидкие кристаллы, а также жидкости, содержащие какие-либо примеси, нарушающие оптическую однородность рассматриваемой системы. Частота возбуждающего электромагнитного излучения vo долл- на находиться в таком диапазоне, где жидкость для этого излучения прозрачна, т. е. полосы поглощения, обусловленные внутримолекулярными переходами, на шкале частот расположены далеко от vq. При изуче-НИИ рэлеевского рассеяния света используют, как правило, электромагнитные волны, частоты которых расположены в оптическом диапазоне частот. Известно, что в этом диапазоне частот диэлектрическая проницаемость среды е равна квадрату показателя преломления п E=rfi.  [c.107]

Тем не менее решения уравнения Шредингера должны существовать, и поэтому оказалось возможным ввести, как и в теории кристаллов, понятие плотности состояний iV(e). При этом величина Ы ъ)йг — количество состояний электронов с заданным направлением спина в единице объема и в интервале энергий между е и е + Если электроны рассеиваются слабо, то достаточно хорошим оказывается приближение свободных электронов. В этом случае, как и ранее, можно ввести сферическую поверхность Ферми, и Ы г) будет определяться уже известной формулой (4.89). Подобная ситуация реализуется, например, для жидких металлов. В случае сильного рассеяния N(е) может значительно отличаться от (4.89), и поверхность Ферми, строго говоря, ввести нельзя. Экспериментальные исследования преимущественно оптических и электрических свойств некристаллических веществ и их теоретический анализ показали, что и для этих материалов в энергетическом спектре электронов можно выделить зоны разрешенных и запрещенных энергий. Об этом свидетельствует, в частности,, резкий обрыв рая поглощения видимого или инфракрасного излучения для материалов (кванты электромагнитного излучения энергии, меньшей некоторой критической, не могут возбуждать электроны  [c.276]

Из совокупности самых разных опытных данных следует, что внутренние четности протона, нейтрона и электрона можно положить равными единице. Тогда из правил а), б) следует важное для теории атомов и ядер соотношение четность системы п нуклонов (или электронов) с орбитальными моментами 1 ,. .., 1 равна (—l) i+ 2+Только что изложенные правила определения четностей различных состояний неприменимы для фотонов (и вообще для частиц с нулевой массой покоя и ненулевым спином). Правила отбора по четности для электромагнитного излучения будут изложены в гл. VI, 6.  [c.75]


Возможны, однако, и другие обобщения классической механики, порождаемые более тонкой аналогией. Мы видели, что принцип Гамильтона дает возможность компактно и инвариантно сформулировать уравнения механического движения. Подобная возможность имеется, однако, не только в механике. Почти во всех областях физики можно сформулировать вариационные принципы, позволяющие получить уравнения движения , будь то уравнения Ньютона, уравнения Максвелла или уравнения Шредингера. Если подобные вариационные принципы положить в основу соответствующих областей физики, то все такие области будут обладать в известной степени структурной аналогией. И если результаты экспериментов указывают на необходимость изменения физического содержания той или иной теории, то эта аналогия часто показывает, как следует произвести подобные изменения в других областях. Так, например, эксперименты, выполненные в начале этого века, указали на то, что как электромагнитное излучение, так и элементарные частицы обладают квантовой природой. Однако методы квантования были сначала развиты для механики элементарных частиц, описываемой классическими уравнениями Лагранжа. Если электромагнитное поле описывать с помощью лагранжиана и вариационного принципа Гамильтона, то методами квантования элементарных частиц можно будет воспользоваться для построения квантовой электродинамики (см. 11.5).  [c.60]

Подобная картина имеет место в квантовой теории электромагнитного поля. Частотам гармонических осцилляторов здесь соответствуют частоты излучения, а амплитуды возбуждения получают здесь дискретные значения, представляющие число фотонов каждой частоты.  [c.363]

Эта порция, или квант энергии тепловых колебаний решетки, называется фононом. хю аналогии с квантом электромагнитного излучения — фотоном. Эта аналогия прослеживается и. далее. С точки зрения квантовой теории равновесное тепловое излучение рассматривается как газ, образованный квантами света — фотонами, обладающими энергией Е — hv = Н(л и импульсом р = йи/с = = к/Х, где с — скорость света. Точно так же поле упругих волн, заполняющих кристалл, можно трактовать как газ, образованный квантами нормальных колебаний решетки — фононами, обладаю-Щ.ИМИ энергией = hv = Лю и импульсом  [c.131]

Материал книги представлен в трех частях. В ч. 1 даны основные понятия теории теплового излучения, рассмотрены законы взаимодействия электромагнитной энергии и вещества и законы термодинамически равновесного излучения.  [c.5]

Второй механизм однородного ушнрения линии связан с явлением спонтанного излучения. Поскольку спонтанное излучение неизбежно присутствует в случае любого перехода, данное уширение называется естественным или собственным ушире-нием. Мы предварим обсуждение этого механизма уширения следующим замечанием. С помощью термодинамических соображений можно показать (см. раздел 2.4.3), что форма линии данного перехода будет одной и той же, независимо от того, наблюдаем ли мы форму линии поглощения (т. е. Wn), вынужденного излучения (т. е. W2 ) или спонтанного излучения. В случае естественного уширения проще всего рассматривать спектральную зависимость излучаемого света. К сожалению, как это станет яснее в разд. 2.3, спонтанное излучение есть чисто квантовое явление, т. е. оно может быть корректно описано только квантовой теорией электромагнитного излучения. Поскольку эта теория выходит за рамки книги, мы ограничимся тем, что выпишем окончательный результат и обоснуем его некоторыми простыми физическими соображениями.  [c.47]

Оптический и другие диапазоны электромагнитньк волн. Теоретически мыслимым является существование всех частот от V = О до V = оо. Однако корпускулярные свойства излучения накладывают на эти возможности ограничения. Как показывается в квантовой теории, электромагнитное излучение существует в виде порций энергии (квантов). Энергия кванта излучения связана с его частотой формулой  [c.12]

Компоненты тензора поляризуемости могут быть комплексными они могут зависеть от со. Теперь мы можем напомнить некоторые факты, хорошо известные из теории электромагнитного излучения. Колеблющийся диполь излучзет во всех направлениях.  [c.80]

Изложенные положения из теории излучения непосредственно относятся и к электромагнитному излучению атомных ядер. ЯдрО представляет собой квантовомеханическую систему с дискретнь1 1 набором резко выраженных энергетических уровней. При радиационном переходе ядра из некоторого возбужденного состояния k в состоянии i с меньшей энергией испускается 7-фотои с частотой, удовлетворяющей условию частот Бора  [c.256]

Мезонные теории ядерных сил строятся по аналогии с квантовой электродинамикой. Как известно, в квантовой электродинамике электромагнитное поле рассматривается совместно со связанными с ним частицами — фотонами. Оно как бы состоит из фотонов, которые являются его квантами. Энергия поля равна сумме энергии квантов. Фотоны возникают (исчезают) при испускании (поглощении) электромагнитного излучения (например,. света). Источником фотонов является электрический заряд. Взаимодействие двух зарядов сводится к испусканик> фотона одним зарядом и поглощению его другим. При такой постановке вопроса становится возможным рассмотрение новых, явлений, относящихся к классу взаимодействий излучающих систем с собственным полем излучения. Этим путем удается,, например, объяснить аномальный магнитный момент электрона и мюона (см. 10, п. 3 И, п. 6), лэмбовский сдвиг уровней в тонкой структуре атома водорода и ряд других тонких эффектов.  [c.9]

Внешние факторы, обусловливающие квантовые переходы микрообъекта, могут иметь различную физическую природу. В частности, это может быть взаимодействие микрообъекта с электромагнитным излучением. В аппарате квантовой теории указанный фактор выступает как некий оператор взаимодействия, который надо добавить к невозмущенному гамильтониану Н будем обозначать эту добавку Н. С учетом возмущения Н уравнение Шредипгера  [c.241]


В 1861—1864 гг. Дж. Максвеллом была разработана теория электромагнитных волн. Электромагнитная природа инфракрасного излучения была подтверждена опытом, поставленным в 1889 г. Г. Герцем, которому удалось создать электрическим способом инфракрасное излучение с очень большой длиной волны (порядка нескольких миллиметров). Было доказано, что не существует разницы между электромагнитными волнами, созданными электрическим или термическим путем. Более того, эксперименты с инфракрасным излучением во многом подтвердили электромагнитную теорию Максвелла. С1896 г. начинаются встречные поиски по генерированию все более и более коротких волн Герца.  [c.377]


Смотреть страницы где упоминается термин Теория электромагнитного излучения : [c.29]    [c.9]    [c.294]    [c.267]   
Смотреть главы в:

Лазерное дистанционное зондирование  -> Теория электромагнитного излучения



ПОИСК



Взаимодействие материи и излучения Классическая теория электромагнитного поля

Классическая теория электромагнитного излучения

Теория излучения

Электромагнитные



© 2025 Mash-xxl.info Реклама на сайте