Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Дифракция рентгеновских лучей

ДИФРАКЦИЯ НА ТРЕХМЕРНОЙ РЕШЕТКЕ. ДИФРАКЦИЯ РЕНТГЕНОВСКИХ ЛУЧЕЙ (ФОРМУЛА ВУЛЬФА-БРЭГГА)  [c.162]

Чаще всего примитивные векторы элементарных трансляций а, Ь, с не ортогональны. Математический анализ явлений, связанных с кристаллическим состоянием, и в частности дифракции рентгеновских лучей и электронов в кристаллических решетках, сильно упрощается с помощью введенного Дж. В. Гиббсом понятия об обратной решетке. Векторы элементарных трансляций обратной решетки а, Ь, с выражаются через примитивные векторы элементарных трансляций прямой решетки посредством следующих уравнений (рис. 2.41, 2.42)  [c.67]


Указанное обстоятельство нашло важное применение при исследовании дифракции рентгеновских лучей. Так как длины волн рентгеновских лучей обычно в тысячи раз меньше, чем волн видимого света, то все искусственно построенные решетки оказываются для рентгеновских лучей слишком грубыми, а именно d k 1000.  [c.205]

Дифракция рентгеновских лучей  [c.231]

Рассмотренный случай дифракции на трехмерной решетке имеет исключительно важное значение. Он осуществляется практически при дифракции рентгеновских лучей на естественных кристаллах. Лучи Рентгена представляют собой электромагнитные волны, длина которых в тысячи раз меньше длин волн обычного света. Поэтому устройство для рентгеновских лучей искусственных дифракционных решеток сопряжено с огромными трудностями. Мы видели, что трудность эта может быть обойдена путем применения лучей, падающих на решетку под углом, близким к ЭО". Однако дифракция рентгеновских лучей была осуществлена задолго до опытов с наклонными лучами на штрихованных отражательных решетках. По мысли Лауэ (1913 г.), в качестве дифракционной решетки для рентгеновских лучей была использована естественная пространственная решетка, которую представляют собой кристаллы. Атомы и молекулы в кристалле расположены в виде правильной трехмерной решетки, причем периоды таких решеток сравнимы с длиной волны рентгеновских лучей. Если на такой кристалл направить пучок рентгеновских лучей, то каждый атом или молекулярная группа, из которых состоит кристаллическая решетка, вызывает дифракцию рентгеновских лучей. Мы имеем случай дифракции на трехмерной решетке, рассмотренный выше. Действительно, наблюдаемые дифракционные картины соответствуют характерным особенностям дифракции на пространственной решетке.  [c.231]

Благодаря методу Лауэ решаются две задачи огромной важности. Во-первых, открывается возможность определения длины волны рентгеновских лучей, если известна структура той кристаллической решетки, которая служит в качестве дифракционной. Таким образом создалась спектроскопия рентгеновских лучей, послужившая для установления важнейших особенностей строения атома (ср. 118). Во-вторых, наблюдая дифракцию рентгеновских лучей известной длины волны на кристаллической структуре неизвестного строения, мы получаем возможность найти эту структуру, т. е. взаимное расстояние и положение ионов, атомов и молекул, составляющих кристалл. Таким путем был создан структурный анализ кристаллических образований, легший в основу важнейших заключений молекулярной физики.  [c.231]


Особенным затруднением для гипотезы волновой природы рентгеновских лучей служили неудачи опытов, проделанных Рентгеном и рядом других исследователей с целью обнаружить интерференцию и дифракцию рентгеновских лучей. Лишь значительно позже (около 1910 г.) выяснилось, что длина волны рентгеновского излучения значительно меньше, чем у видимого света и ультрафиолетовых лучей, и поэтому первые опыты по осуществлению интерференции были заранее обречены на неудачу.  [c.407]

Дифракция рентгеновских лучей на кристаллической решетке  [c.408]

В опытах по дифракции рентгеновских лучей пучок падает на решетку с периодом 2 мкм под углом скольжения в 30 (угол скольжения — угол, составляемый направлением луча с плоскостью решетки). Угол дифракции для спектра третьего порядка получился равным lVa°- Определить длину волны рентгеновских лучей.  [c.881]

Данные о структуре аморфных веществ получают обычно из опытов по дифракции рентгеновских лучей или электронов. Введем понятие плотности р(г) атомов на расстоянии г от начального атома. Число атомов в сферическом слое толщиной dr на расстоя-  [c.353]

Постоянная решетки определяется путем дифракции рентгеновских лучей на кристалле с высокой точностью — относительная погрешность измерений 0,310 . Измерение плотности проводится с точностью 0,710 . Молярная масса М определяется масс-спектрометрическим путем. Об окончательной погрешности определения постоянной Авогадро Na можно судить по данным табл. 1  [c.71]

Дифракция рентгеновских лучей на кристаллах  [c.47]

Дифракция рентгеновских лучей в кристаллах  [c.48]

Описываются методы наблюдения дифракции рентгеновских лучей на кристаллах.  [c.48]

Однако в отличие от опытов Герца при торможении электронов на аноде отсутствует колебание тока, и поэтому Стокс представил рентгеновское излучение в виде электромагнитного импульса. Окончательное выяснение природы рентгеновских лучей как электромагнитных волн стало возможным в 1912 г., когда М. Лауэ предложил опыты по дифракции рентгеновских лучей, не только доказавшие их волновую природу, но и позволившие измерять длину волны.  [c.48]

Все три способа наблюдения дифракции волн на кристаллических структурах были успешно использованы для изучения дифракции рентгеновских лучей. Это позволило экспериментально доказать электромагнитную природу рентгеновского излучения и определить длину волны рентгеновского излучения, поскольку  [c.51]

Величина остаточных напряжений ограничена релаксацией скольжения в матрице. Методом дифракции рентгеновских лучей  [c.63]

Радиационно-индуцированные изменения в органических молекулах связаны с разрывом ковалентных связей. Б простых органических соединениях радиационные эффекты невелики, но в полимерах они выражены более резко. Радиационно-индуцированные изменения в каучуках и пластиках отражаются на их внешнем виде, химическом и физическом состояниях и механических свойствах. В качестве внешних изменений можно рассматривать временные или постоянные изменения цвета, а также образование пузырей и вздутий. К химическим изменениям относятся образование двойных связей, выделение хлористого водорода, сшивание, окислительная деструкция, полимеризация, деполимеризация и газовыделение. Физические изменения — это изменения вязкости, растворимости, электропроводности, спектров ЭПР свободных радикалов, флуоресценции и кристалличности. Об изменениях кристалличности судят по измерениям плотности, теплоты плавления, по дифракции рентгеновских лучей и другим свойствам. Из механических свойств изменяются предел прочности на растяжение, модуль упругости, твердость, удлинение, гибкость и т. д.  [c.49]

В 1912 году М. Лауэ открыл явление дифракции рентгеновских лучей. Появилась возможность экспериментально наблюдать расположение атомов в твердом теле и структуру кристаллов. Было доказано, что рентгеновские лучи представляют собой такие же колебания, как обычный свет, но с гораздо более короткой длиной волны. Длина волны рентгеновских лучей имеет тот же порядок, что и межатомные расстояния в кристаллах, и правильное расположение атомов,-В периодической решетке обусловливает появление дифракционных максимумов под определенными, резко выраженными углами.  [c.12]


Используя очень косое падение излучения, удалось получить ясно выраженную дифракцию рентгеновских лучей со сравнительно грубой решеткой (d ж 0,02 мм, Комптон и Дьюэн, 1925 г.). Впоследствии по этому методу были получены превосходные дифракционные спектры и с большой точностью были измерены длины волн рентгеновского излучения. Этот метод измерения является в настоящее время наиболее совершенным (ср. 118).  [c.205]

Джермер (1927 г.) и Г. П. Томсон (1928 г.) осуществили опыты по дифракции электронов, вполне аналогичные опытам по дифракции рентгеновских лучей.  [c.361]

Окончательное выяснение природы рентгеновских лучей произошло в 1912 г., когда по идееМ. Лауэ удалось осуществить с несомненностью явление дифракции рентгеновских лучей.  [c.407]

Дифракция рентгеновских лучей и нейтронов. Кеезом н Ка] терлинг-Оннес [91] наблюдали дифракцию рентгеновских лучей на свинце выше и ниже температуры перехода и обнаружили, что дифракционная картина не меняется. Отсюда следует, что изменения постоянных решетки при переходе из нормального состояния в сверхпроводящее чрезвычайно малы.  [c.671]

Условие дистракции Вульфа-Брэгга. Рассмотрим геометрическое условие дифракции на кристалле диафрагмированного монохроматического пучка излучения. Это условие (закон Вульфа—Брэгга) применимо для дифракции рентгеновских лучей, электронов, нейтронов.  [c.55]

Необходимо отметить существенное различие между дифракцией света, падающего на плоскую дифракционную решетку, и дифракцией рентгеновских лучей в трехмерном кристалле. В первом случае угол падения не равен углу, под которым выходит дифрагированный луч. В оптике устанавливается связь между этими двумя углами, длиной световой волны Х и расстоянием между соседними штрихами дифракционной решетки. Закон Вульфа—Брэгга предполагает, что падающие рентгеновские лучи отражаются зеркально (угол падения равен углу отражения). Поэтому условие наилучшего отражения, по Вульфу— Брэггу, связывает угол падения с длиной волны и расстоянием между соседними параллельными отражающими плоскостями, при этом совершенно не учитывается расположение атомов в отражающей плоскости.  [c.55]

Промежуточная по энергии между сильными (ионной, металлической и ковалентной) и слабой (ван-дер-ваальсовой) связь, называемая водородной, возникает между атомами Н, входящиМ И в ковалентные группировки типа NH или ОН, и электроотрицательными атомами N, О, F, С1, S, причем расстояния между атомом Н и соседними атомами чаще всего бывают неодинаковыми. Поэтому ее типичное изображение АН...В. При взаимодействии атома Н с атомами с большей электроотрицательностью часть электронного заряда Н передается соседям. По данным о дифракции рентгеновских лучей и нейтронов и некоторым другим оценкам, в группе АН атом Н частично ионизован, сохраняя лишь 0,5—  [c.113]

Прямые методы определения структуры кристаллов ведут свое начало от открытия Лауэ, Фридрихсом и Книппингом в 1912 г. интерференции рентгеновских лучей на кристаллической решетке. Рассмотрим основные моменты теории дифракции рентгеновских лучей на пространственной решетке кристалла. Некоторые из них уже были приведены в 3 гл. 1. Вкратце они состоят в следующем. Пусть плоская поляризованная электромагнитная волна в момент времени t падает на свободный заряд в точке О. Тогда напряженность поля вторичной волны, создавае-  [c.182]

В теоретическом плане анализ дифракции электронных волн полностью совпадает с дифракцией рентгеновских лучей (см. 6). В опытах Дэвидсона и Джермера дифракция электронных волн наблюдалась по  [c.60]

За прошедшее после опытов М. Лауэ время определена структура нескольких тысяч кристаллических веществ благодаря усовершенствованиям, которые" внесли английские ученые отец и сын У. и Л. Брэгги в метод дифракции рентгеновских лучей. Еще будучи студентом Кембриджокого университета, Л. Брзгг развил теорию дифракции рентгеновских лучей, выведя так называемое уравнение Брэгга. Его отец У. Брэгг сконструировал рентгеновский спектрометр.  [c.25]

Продукты коррозии некоторых сталей исследовали методами дифракции рентгеновских лучей, спектрографического анализа, количественного химического анализа и инфракрасной спектрофотометрии. В продуктах коррозии были найдены РеаОз Ре(ОН)з FeOOH и F aOa-HjO, а также значительные количества хлор-, сульфат- и фосфат-ионов.  [c.248]

Продукты коррозии, образовавшиеся на литейной N1—Мп бронзе в течение 403 сут экспозиции на глубине 1830 м, исследовались при помощи дифракции рентгеновских лучей методами спектрографии, инфракрасной спектрофотометрии и количественного химического анализа. Продукты коррозии состояли из хлористой меди u Is-HaO, оксихлорида меди [Си2(ОН)зС1], металлической меди 35,98%, небольших количеств алюминия, железа, кремния и натрия хлор-ионов в виде I —0,91 %  [c.275]

Анализ при помощи дифракции рентгеновских лучей, спектрохимиче-ский и химический анализы продуктов коррозии медных сплавов 400 и К-500 показали, что они состояли из окиси меди СиО, хлористой меди СиСЬ, оксихлорида меди СиСЬ-ЗСиОЧНзО, следов сернистого никеля NiS и фосфат-, хлор- и сульфат-ионов.  [c.306]

Продукты коррозии, взятые из одного коррозионного туннеля в нержавеющей стали A1S1 430, анализировались при помощи дифракции рентгеновских лучей, методами спектрографического анализа, количественного химического анализа и инфракрасной спектрофотометрии. В продуктах коррозии обнаружили аморфный оксид железа РегОз-ХНаО, Fe, Сг, Мп, Si, следы Ni, 1,41J% хлор-ионов, 2,12% сульфат-ионов и значительное количество фосфат-ионов.  [c.335]


Исследования продуктов коррозий сплава 3003-Н14 при помощи дифракции рентгеновских лучей, спектрографического анализа, количественного химического анализа п инфракрасной спектрометрии показали наличие аморфных соединений АЬОз-ХНгО, Na l, Si02, Al, Na. Si, Mg, Fe, u, a, Mn, 3,58 % хлор-ионов, 18,77 % сульфат-ионов и значительного количества фосфат-ионов.  [c.368]


Смотреть страницы где упоминается термин Дифракция рентгеновских лучей : [c.163]    [c.495]    [c.55]    [c.78]    [c.174]    [c.185]    [c.186]    [c.281]    [c.26]    [c.51]    [c.51]    [c.61]    [c.20]    [c.411]   
Смотреть главы в:

Оптика  -> Дифракция рентгеновских лучей


Оптика (1977) -- [ c.163 , c.164 ]

Оптика (1976) -- [ c.231 , c.408 ]

Окисление металлов и сплавов (1965) -- [ c.225 ]

Основы физики поверхности твердого тела (1999) -- [ c.134 ]

Задачи по оптике (1976) -- [ c.224 ]

Общий курс физики Оптика Т 4 (0) -- [ c.384 ]

Физика твердого тела Т.2 (0) -- [ c.105 , c.109 ]

Статистическая механика Курс лекций (1975) -- [ c.131 ]

Физика твердого тела Т.1 (0) -- [ c.105 , c.109 ]



ПОИСК



Аморфные твердые тела дифракция рентгеновских лучей

Бравэ и дифракция рентгеновских лучей

ВОЛНОВЫЕ СВОЙСТВА КОРПУСКУЛ Дифракция рентгеновских лучен в кристаллах

Динамические эффекты при дифракции рентгеновских лучей и нейтронов

Дифракция

Дифракция лучей

Дифракция на двумерных и трехмерных решетках. Дифракция рентгеновских лучей

Дифракция на трехмерной решетке. Дифракция рентгеновских лучей (формула Вульфа—Брэгга)

Дифракция рентгеновских лучей в кристаллах

Дифракция рентгеновских лучей и дифракция нейтронов

Дифракция рентгеновских лучей на кристаллической решетке

Дифракция рентгеновских лучей поляризация

Исследование структуры простых жидкостей методом дифракции рентгеновских лучей

Определение обратной решетки 96 Обратная решетка как решетка Брав 97 Решетка, обратная к обратной 97 Важные примеры 98 Объем элементарной ячейки обратной решетки 98 Первая зона Бриллюэна 99 Атомные плоскости Индексы Миллера атомных плоскостей Некоторые правила обозначения направлений Задачи Определение кристаллических структур с помощью дифракции рентгеновских лучей

Поликристаллическое состояние и дифракция рентгеновских лучей

Получение и дифракция рентгеновских лучей

Приложение В. Дифракция рентгеновских лучей на кристаллах. Эквивалентность условий Лауэ и концепции отражения Брэгга Приложение Г. Электромагнитный спектр

Рентгеновские лучи

Рентгеновское излучение. Формула Брэгга Вульфа. Методы наблюдения дифракции волн на кристаллах. Способ Лауэ, Способ Брэгга. Способ ДебаяШерера. Учет преломления рентгеновских лучей Эффект Рамзауэра-Таунсенда

См. также Ангармонические члены Бриллюэновское рассеяние Время релаксации Дифракция рентгеновских лучей

Структурный анализ кристаллов, дифракция нейтронов рентгеновских лучей

Трехмерная решетка. Дифракция рентгеновских лучей

Условие дифракции рентгеновских лучей

Условие дифракции рентгеновских лучей и обратная решетка

Условие дифракции рентгеновских лучей формулировка Брэгга

Условие дифракции рентгеновских лучей эквивалентность формулировке Брэгга

Х-лучи



© 2025 Mash-xxl.info Реклама на сайте