Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Скорость света лучевая

Эллипсоид Френеля и служит, как показал Френель, для определения с помощью следующего построения лучевых скоростей и и и" по любому направлению в кристалле. Проведем сечение эллипсоида, перпендикулярное к направлению 5, вдоль которого распространяется свет (рис. 26.5). Сечение это, вообще говоря, будет иметь форму эллипса, главные оси которого и 8 5 взаимно перпендикулярны. Направления этих осей дают направление колебания вектора Е двух волн, поляризованных взаимно перпендикулярно и распространяющихся вдоль 05, а длины полуосей (05 = о 05" = и") — лучевые скорости этих двух волн, отнесенные к скорости света в вакууме с.  [c.502]


Эта разность потенциалов в практике электронно-лучевой сварки называется ускоряющим напряжением U. Работа затрачивается на сообщение электрону кинетической энергии. В современных технологических установках для электронно-лучевой сварки ускоряющее напряжение и = 10...100 кВ, скорость электронов в пучке может достигать 0,2...0,5 скорости света.  [c.245]

Френеля бипризма 201 — закон лучевых скоростей света в кристалле 504  [c.750]

В заключение покажем, исходя из лучевых поверхностей в одноосных кристаллах, что двум лучам со скоростями ys и vs, идущим по одному и тому же направлению соответствуют два не параллельных между собой плоских фронта со скоростями распространения v n и vh и с нормалями Ni и С этой целью направим из некоторой точки О кристалла (рис. 10.12) луч света Si,2- Очевидно, что в этом направлении луч распространяется с двумя различными скоростями v s и Vs. Если учесть, что плоскости, касательные к лучевой поверхности в точке пересечения ее с лучом, являются плоскостями волнового фронта и скорости по нормали перпендикулярны этим плоскостям и что, кроме того, нормаль и луч для обыкновенного луча направлены вдоль одной линии, го, проведя нормали к поверхностям I и II, получим =/= vh- Аналогичным образом убедимся, что двум параллельным фронтам волны с нормалью Л 1,2 и со скоростями распространения v n и v соответствуют два луча Si и со скоростями v s ф й. образующие некоторый угол между собой (рис. 10.12). Чтобы найти направление луча S,, нужно провести касательную к эллипсоидальной поверхности (пло-  [c.260]

XX, УУ, 22 — главные оси эллипсоида 05 — направление распространения лучей 5 5"5 5" — эллиптическое сечение, перпендикулярное к 05 и определяющее своими главными осями 5 5 и 5"5" направление колеба 1Ия вектора Е п значение лучевых скоростей распространения света V и ь".  [c.502]

К анализу хода лучей света с помощью эллипсоида лучевых скоростей  [c.268]

При обобщении построений Гюйгенса на случай анизотропной одноосной среды для вторичных волн нужно использовать найденные в 4.2 поверхности лучевых скоростей. Касательная к ним плоскость дает положение фронта (т. е. поверхности равных фаз) преломленной волны, а прямая, проведенная из центра вторичной волны в точку касания, — направление преломленного луча. Так как лучевая поверхность состоит из сферы и эллипсоида, то построение Гюйгенса дает два луча обыкновенный, направление которого совпадает с нормалью к фронту, как и в изотропной среде, и необыкновенный, направление которого в общем случае отклоняется от нормали к фронту необыкновенной волны. Для строгого обоснования построений Гюйгенса (которое здесь не приводится) требуется показать, что распространение света от точечного источ ника по некоторому направлению в анизотропной среде происходит так же, как и рассмотренных в 4.2 плоских волн, скорости кото рых по разным направлениям характеризуются лучевыми поверхностями.  [c.189]


В этом случае лучевые скорости будут, конечно, также почти параллельны друг другу. Физическое взаимодействие между пучками света конечного поперечного сечения происходит ВДОЛЬ направления потока энергии г. Этот вывод указывает на важность члена с ( os а) с физической точки зрения. Ол также показывает, что истинным источником является компонента нелинейной поляризации, параллельная вектору электрического поля. Существует, конечно, другая волна, также распространяющаяся вдоль оси г и имеющая иной вектор поляризации аз Примем, что фазовая скорость этой волны сильно рассогласована, Ak Ak. Поэтому мы не будем учитывать Эту волну, равно как и волны других частот.  [c.294]

При определении направления и расстояния до тела, находящегося за пределами земной атмосферы, используется целый арсенал методов наблюдений. Большое разнообразие методов обусловлено тем, что расстояние до тела, его скорость, поток излучения и форма могут изменяться в широких пределах. Объект (искусственный) может находиться на орбите, близкой к Земле, на более значительном расстоянии или в межпланетном пространстве. Он может быть источником радиосигналов или же отражать солнечный свет. Его видимая скорость может изменяться от нескольких градусов в секунду до нескольких дуговых секунд в час. Если же объект является естественным телом Солнечной системы, то это может быть Солнце, Луна, планета, спутник, астероид или комета. Тогда тело (если это не Солнце) будет отражать солнечный свет, причем его яркость будет зависеть от формы, альбедо (отражательной способности) и расстояний от Солнца и наблюдателя. Видимая скорость тела относительно звезд может составлять 13 в сутки для Луны, Г в сутки для Солнца и значительно меньше для других тел. Угловые скорости звезд и других тел, удаленных на значительное расстояние, настолько малы, что измерить их поперечное движение удается лишь для объектов, ближайших к Солнечной системе. В основном судить об их движении мы можем только по результатам определения их лучевых скоростей. Кроме того, излучение этих тел может наблюдаться преимущественно в видимой части спектра, в радиодиапазоне, в рентгеновском или инфракрасном диапазонах.  [c.63]

В свете сказанного выше ясно, что с обоими членами тесной двойной системы может быть связано вещество, окружающее эту двойную. Это вещество было действительно обнаружено при изучении многих двойных. Оно может иметь форму газовых потоков, дисков, оболочек или облаков, окружающих оба компонента. Присутствие подобных образований обнаруживается по дополнительным линиям излучения или поглощения в спектрах этих двойных, по возмущениям измеренных лучевых скоростей, определяющих кривые скоростей компонентов и по видоизменению кривых блеска.  [c.472]

Необыкновенный луч демонстрирует возможность несовпадения направления перемещения волнового фронта фазовой скорости) и направления переноса энергии лучевой скорости). Это и есть одна из отличительных особенностей распространения света в анизотропных средах.  [c.203]

Вследствие весьма больщой скорости света лучевое давление на стенку оказывается заметным лишь при очень больших удель-  [c.387]

Я перенес главу, посвященную основным фотометрическим понятиям, во введение, желая использовать правильную терминологию уже при описании явлений интерференции и оставив в отделе лучевой оптики лишь вопросы, связанные с ролью оптических инструментов при преобразовании светового потока. Заново написаны многие страницы, посвященные интерференции, в изложении которой и во втором переработанном издании осталось много неудовлетворительного. Я постарался сгруппировать вопросы кристаллооптики в отделе VIII, хотя и не счел возможным полностью отказаться от изложения некоторых вопросов поляризации при двойном лучепреломлении в отделе VI, ибо основные фактические сведения по поляризации мне были необходимы при изложении вопросов прохождения света через границу двух сред, с которых мне казалось естественным начать ту часть курса, где проблема взаимодействия света и вещества начинает выдвигаться на первый план. Я переработал изложение астрономических методов определения скорости света и добавил некоторые новые сведения о последних лабораторных определениях этой величины. Гораздо больше внимания уделено аберрации света. Рассмотрены рефлекторы и менисковые системы Д. Д. Максутова. Значительным изменениям подверглось изложение вопроса о разрешающей способности микроскопа я постарался отчетливее представить проблему о самосветя-щихся и освещенных объектах. Точно так же значительно подробнее разъяснен вопрос о фазовой микроскопии, приобретший значительную актуальность за последние годы.  [c.11]


Задача определения скорости света принадлежит к числу важнейших проблем оптики и физики вообще. Решение этой задачи имело огромное принципиальное и практическое значение. Установление того, что скорость распространения света конечна, и измерение этой скорости сделали более конкретными и ясными трудности, стоящие перед различными оптическими теориями. Первые методы определения скорости света, опиравшиеся на астрономические наблюдения, способствовали со своей стороны ясному пониманию чисто астрономических вопросов о затмениях отдаленных светил и о годичном параллаксе звезд. Точные лабораторные методы определения скорости света, выработанные впоследствии, используются при геодезической съемке. Теоретическое обоснование и экспериментальное исследование принципа Допплера в оптике сделали возможным решение задачи о лучевых скоростях светил или движущихся светящихся масс (протуберанцы, каналовые лучи) и привели к весьма широким астрономическим обобщениям. Сравнительное измерение скорости света в вакууме и различных средах послужило в свое время в качестве ехрег1теп1ит сгис1з для выбора между волновой и корпускулярной теориями света, а впоследствии привело к понятию групповой скорости, имеющему большое значение и в современной квантовой физике. Сравнение скорости распространения света с константой с максвелловской теории, обозначающей, с одной стороны, отношение между электромагнитными и электростатическими единицами заряда, а с другой — скорость распространения электромагнитного поля, сыграло важнейшую роль при обосновании электромагнитной теории света. Наконец, вопрос о влиянии движения системы на скорость распространения света и вся обширная совокупность связанных с ним экспериментальных и теоретических проблем привели к формулировке эйнштейновского принципа относительности — одного из самых значительных обобщений  [c.417]

Строгое волновое представление пучка лучей , исходящих из некоторого источника, с резко ограниченным конечным поперечным сечением, получается в оптике, по Дебаю, следующим образом берется суперпозиция континуума плоских волн, каждая из которых заполняет все пространство, при этом нормали к входящим в суперпозицию волновым поверхностям изменяются в пределах заданного угла. Вне определенного двойного конуса полны в результате интерференции почти совершенно уничтожают друг друга, так что с ограничениями, связанными с дифракцией, получается волновое представление ограниченного светового пучка. Подобным же образом можно представить и бесконечно узкий лучевой конус, изменяя лишь волновую нормаль совокупности плоских воли внутри бесконечно малого телесного угла. Этим обстоятельством воспользовался фон Лауз в своей знаменитой работе о степенях свободы лучевых пучков ). Наконец, вместо того чтобы использовать, как это до сих пор молчаливо предполагалось, только чисто монохроматические волны, можно варьировать частоту внутри некоторого бесконечно малого интервала и посредством соответствующего подбора амплитуд и фаз ограничить возмущение областью, которая будет сравнительно мала также и в продольном направлении. Таким образом может быть шшучаыо анадихическоа прадртаилениА энергетического пакета сравнительно небольших размеров этот пакет будет передвигаться со скоростью света или в случае дисперсии с групповой скоростью. При этом мгновенное положение энергетического пакета (если не касаться его структуры) определяется естественным образом, как та точка пространства, где  [c.686]

ФРЕНЕЛЯ ЭЛЛИПСбИД — эллипсоид, соответствующий поверхности световой волны, распространяющейся от точечного источника в кристалле. Длины осей Ф. э. пропори. значениям гл. лучевых скоростей света в кристалле. Ф. э. описывается ур-нием  [c.375]

Если период измерен с достаточной точностью (для определенности — у затменной двойной), то можно предсказать моменты начал и окончаний затмений. Эти эфемериды можно затем сравнить с наблюдениями и выявить любое изменение периода. Подобные изменения периода наблюдаются у многих двойных. Они могут быть случайными или периодическими и связаны с самыми разнообразными причинами. Мы рассмотрим также изменения в последнем разделе. Здесь же следует напомнить, что в измеренный период необходимо вводить поправки за лучевую скорость центра масс двойной относительно Солнца, а также за орбитальную скорость Земли вокруг Солнца. Эти поправки аналогичны вводимым при сравнении наблюдений прохождений по диску, затмений и покрытий галилеевых спутников Юпитера с теоретическими расчетами первые систематически оказываются то раньше, то позже предвычисленных, что связано с конечным значением скорости света и вариацией расстояния между спутниками Юпитера и Землей (именно изучение причин подобного плохого хранения времени спутниками Юпитера привело Рёмера к из.мерению скорости света в 1675 г.).  [c.464]

Волновая (лучевая) поверхность. Изучение распространения световой волны в анизотропной среде может быть, как мы видели, в равной мере осуш,ествлепо, исходя как из скоростей по лучу, так и 3 скоростей по нормали. Знание значений лучевых скоростей и скоростей по нормали по всем направлениям в кристалле позволяет построить вспомогательные поверхности, характеризуюш,ие распространение света в данном кристалле.  [c.257]

Пусть из некоторой точки внутри кристалла распространяется свет по разным направлениям. Если по любому выбранному направлению отложить из этой точки отрезки, равные Vst и v st (где t — время распространения света внутри кристалла, us и ws — лучевые скорости по данному направлению), то геометрические места концов этих отрезков для разных направлений образуют двухполостную, так называемую лучевую, поверхность. Она, вообш,е говоря, имеет сложный вид, и поэтому ее рассмотрение производят в основном по трем ее главным сечениям, нормальным к главным осям лучевого эллипсоида. Двухполостная лучевая поверхность обладает в общем случае четырьмя точками встречи внешней и внутренней полости. Две прямые линии, соединяющие эти четыре точки попарно и расположенные симметрично относительно главных направлений кристалла (рис. 10.8), обладают особым свойством — вдоль каждого из них свет распространяется с единственной для данного направления лучевой скоростью. Эти две линии являются оптическими осями первого рода.  [c.257]


Можно продолжить перечисление технических трудностей, появляющихся при наблюдении сигнала биений, возникающего при освещении интерферометра уширенной спектральной линией, но они ничего не меняют в принципиальной постановке проблемы. Бесспорно, задав тем или иным способом корреляцию между двумя исследуемыми волнами, можно наблюдать их интерференцию. Если частота о>2 задается равномерным движением зеркала, от которого отражается часть исследуемого излучения, то будет происходить интерференция любой волны с частотой roi, лежащей в пределах контура спектральной линии, с другой волной частоты (02, отличающейся от частоты первой на разностную частоту 2л/. Тогда будет наблюдаться сигнал биений, который позволяет определять сколь угодно малую скорость движения зеркала, так как можно зарегистрировать очень малые изменения интерференционной картины. Та минимальная скорость v, которую еще можно измерить, определится условиями опыта. Е1о, конечно, это будут значения на много порядков меньше, чем те громадные скорости, о которых шла речь ранее. Приведенная выше оценка точности астрономических измерений лучевой скорости по эффекту Доплера (и 1 км/с) соответствует сравнению никак не скоррелированных источников света, которыми являются исследуемая звезда и какой-то земной источник света, излучающий ту же спектральную линию.  [c.397]

Шаровые скопления. Типичное ШС имеет характерный шарообразный вид в ряде случаев оно может быть нсск. сплюснутым. В ШС выделяют компактное ядро, концентрация звёзд в к-ром достигает 10 10 пк , промежуточную зону с резким падением концентрации и разреженную, но обширную и массивную корону. Звёзды ШС движутся в регулярном гравитац. поле, создаваемом всей массой скопления, изредка испытывая тесные сближения с соседними звёздами и при этом резко меняя скорость. Звёзды ядра пополняют корону и затем из-за возмущений со стороны Галактики покидают скопление его масса непрерывно уменьшается. В Галактике известно 142 ШС. Они встречаются во всём объёме Галактики и сильно концентрируются к её ядру. Полное число ШС (многие из к-рых из-за поглощения света пылевой материей в диске Галактики не видны), согласно оценкам, 300—500. Из-за большой удалённости от Солнца (до ближайшего ШС не менее 2 кик) ШС являются сложными для изучения объектами. Пространств, скорости подавляющего большинства ШС неизвестны. Для них определены лишь лучевые скорости порядка 100—200 км/с (хаотич. скорости звёзд в самих ШС 1 10 км/с). ШС движутся по сильно вытянутым орбитам, многие из них приближаются к центру Галактики на расстояние порядка 2—3 кнк. Как по пространств, распределению, так и по кинематич. характеристикам ШС — типичные представители га-лактич. гало (см. Галактика). ШС являются одними из старейших объектов Галактики. Их возраст, вероятно, заключён в пределах от 5 до 15 млрд, лет.  [c.65]

МОДУЛЯЦИЯ (от лат. тойи1а1)о — мерность, размеренность) — изменение по заданному закону во времени параметров, характеризующих к.-л. стационарный процесс. Примеры М. изменение по определ. закону амплитуды, частоты или фазы гармонии, колебания для внесения в колебат. процесс требуемой информации (см. Модулированные колебания. Модуляция колебаний), изменение во времени интенсивности электронного потока в электронно-лучевом осциллографе, осуществляемое с помощью спец, электрода (модулятора) и приводящее к соответствующему изменению яркости свечения экрана трубки управление яркостью света с помощью поляризующих устройств и ячейки Керра (см. Модуляция света) изменение скорости электронов и плотности пучка в электронном потоке в клистроне и др. В этих случаях один или неск. параметров, характеризующих стационарный процесс (напр,, интенсивность, амплитуда, скорость, частота), изменяются синхронно с модулирующим воздействием.  [c.183]

Анализ распространенйя волн проводится аналогично анализу хода лучей, надо лишь вместо эллипсоида лучевых скоростей пользоваться эллипсоидом волновых нормалей. Направление распространения волны задается вектором п. Находится сечение эллипсоида (41.15) плоскостью, перпендикулярной п и проходящей через центр эллипсоида. Колебания вектора О возможны лищь в направлениях, параллельных главным осям эллипса в сечении эллипсоида. Фазовые скорости волн обратно пропорциональны длинам соответствующих главных осей эллипса. Однако для анализа распространения света в анизотропных средах удобнее- пользоваться понятием лучевой поверхности, а не поверхности волнового фронта.  [c.270]

В варианте ОКУ18 [53] двух лучевой интерферометр настраивается таким образом, что рекомбинирующие пучки наклонены друг относительно друга на некоторый малый угол ф. В результате в поперечном сечении области интерференции образуется система полос, расстояние между которыми б = Х,/51п (р. При работе со светом, отраженным от движущейся поверхности, смещение полос на величину (1 соответствует одному интерференционному биению, то есть, как и ранее, изменению скорости поверхности на величину к/2 Ai. Эволюция системы интерференционных полос в процессе измерений регистрируется электроннооптическим фотохронографом, работающим в режиме щелевой фоторазвертки. Из-за худших метрологических характеристик камер с ЭОП, их применение несколько увеличивает погрешность амплитудных измерений.  [c.70]

АНИЗОТРОПИЯ, явление, выражающееся в зависимости физич. величин, выражающих определенное свойство твердого или жидкого тела от направления, вдо.11Ь к-рого эта величина (коэфициент теплопроводности, показатели преломления, прочность на разрыв и др.) измеряется. Тела, обладающие А., называются анизотропными в противоположность изотропным, в к-рых свойства по всем направлениям одинаковы. Анизотропная среда однородна (гомогенна) в том случае, когда зависимость физич. свойств от направления одинакова в различных точках среды. Для данного направления все физич. свойства однородного тела не зависят от положения элемента объема, длп к-рого онп исследуются. Однородная А. может быть обусловлена строением тела, наличием кристаллич. структуры или резко выраженной асимметрией его молекул, легко ориентирующихся под влиянием внешнего или собственного поля (жидкие кристаллы, кристаллич. жидкости). А. (например местная) возникает также в результате односторонних деформаций тела (возникновение неравномерно распределенных внутренних напряжений при растяжении, одностороннем сдавливании тел, закалке, вообще при разных видах механической обработки). Поверхностный слой всякого тела вызывает местную А., делая тело неоднородным вблизи поверхности раздела с окружающей средой. При этом А. поверхностного слоя выражается в том, что физич. свойства по тангенциальным направлениям (лежащим в поверхности) отличны от свойств в направлении, нормальном ij поверхностному слою. Тела м. б. анизотропны в отношении одних свойств (напр, оптических) и изотропны относительно других (напр, упругих). Кристаллы всех систем кроме кубической оптически анизотропны. В таких кристаллах по каждому направлению (за исключением направления. лучевых осей) идут два луча, оба поляризованных во взаимно перпендикулярных плоскостях. Оба эти луча распространяются в кристалле с разной скоростью. А. может быть исследована по характеру зависимости физич. свойств напр, тепловых или механических) в данной среде. В прозрачных телах для изучения А. удобнее исследовать оптич. свойства (напр, по отношению к поляризованному свету). Наиболее полным методом исследования является исследование структуры (рентгено- или электро-нографич. анализ), обусловливающей А.  [c.388]


Распространение света в кристаллах, как и любых волн в анизотропных средах, характеризуется замечательной двойственностью, или взаимностью. Она обусловлена тем, что в анизотропных средах каждой волновой нормали соответствует луч, т. е. прямая, вдоль которой происходиг распространение энергии волны. Поскольку энергия распространяется с групповой скоростью, для исследования свойств лучей и обоснования самого понятия луча надо вычислить групповую скорость в анизотропной среде. В этом случае такую скорость называют также лучевой скоростью. Для ее вычисления воспользуемся формулой (8.16), подставив в нее = kv(k). Дифференцируя по и учитывая, что дк/дк = получим  [c.499]

НЕЙТРОННАЯ ОПТИКА, раздел нейтронной физики, в рамках к-рого изучается вз-ствие медленных нейтронов со средой и с эл.-магн. и гравитац. полями. В условиях, когда длина волны де Бройля нейтрона Х=Штр т — масса нейтрона, V — его скорость) сравнима с межат. расстояниями или больше их, существует нек-рая аналогия между распространением в среде фотонов и нейтронов. В Н. о., так же как и в световой оптике, есть неск. типов явлений, описы ваемых либо в лучевом приближении (преломление и отражение нейтронных пучков на границе двух сред), либо в волновом (дифракция в периодич. структурах и на отд. неоднородностях). Комбинационному рассеянию света соответствует неупругое рассеяние нейтронов круговой поляризации света можно сопоставить (в первом приближении) поляризацию нейтронов. Аналогию между нейтронами и фотонами усиливает отсутствие у них электрич. заряда. Однако в отличие от квантов эл.-магн. поля не троны, двигаясь в среде, в осн. взаимодействуют с ат. ядрами, обладают магн. моментом и массой покоя, вследствие чего скорость распространения тепловых нейтронов в 10 —10 раз меньше, чем для фотонов той же длины волны.  [c.453]


Смотреть страницы где упоминается термин Скорость света лучевая : [c.255]    [c.45]    [c.5]    [c.375]    [c.138]    [c.503]    [c.833]    [c.833]    [c.388]    [c.395]    [c.465]    [c.219]    [c.190]    [c.149]    [c.18]    [c.24]    [c.283]    [c.201]    [c.40]    [c.126]   
Оптика (1976) -- [ c.435 , c.501 ]



ПОИСК



Скорость лучевая

Скорость света

Френеля закон лучевых скоростей света



© 2025 Mash-xxl.info Реклама на сайте