Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

ЭКСПЕРИМЕНТАЛЬНЫЕ МЕТОДЫ ОПРЕДЕЛЕНИЯ УСИЛИИ И ДЕФОРМАЦИИ

ЭКСПЕРИМЕНТАЛЬНЫЕ МЕТОДЫ ОПРЕДЕЛЕНИЯ УСИЛИЙ И ДЕФОРМАЦИЙ  [c.269]

При разработке технологических процессов обработки металлов давлением и проектировании оборудования наряду с аналитическими методами определения усилий и деформаций большое значение имеют экспериментальные методы определения этих величин. Экспериментами проверяют принципиальную правильность аналитических методов, уточняют поправочные коэффициенты в формулах применительно к конкретным условиям. В последние годы техника экспериментального исследования процессов обработки металлов давлением получила большое развитие.  [c.269]


Повышение скоростей движения машин технологического назначения (тракторов, автомобилей, подвижного состава железных дорог), достигнутое в созданных рядом отраслей конструкциях увеличенной эффективности и проходимости, а также успешное применение импульсных процессов в теХ нологии формоизменения и упрочнения, были связаны с разработкой задач о распространении упругих и упруго-пластических волн, преимущественно в одномерной постановке. Применение метода характеристик и изыскание вычисляемых алгоритмов уравнений упруго-пластических деформаций позволили решить ряд задач расчета динамических усилий и деформаций при соударении деталей и при импульсных процессах формообразования, образующих зоны упрочнения на поверхности деталей. Большое практическое значение получили экспериментальные работы этого направления, позволившие измерить как протекание деформаций во времени, так и получение уравнений состояния, необходимых для определения действительных усилий. Полученные уравнения состояния показали существенное значение эффекта повышения сопротивления пластическим деформациям и их запаздывания в зависимости от скорости процесса.  [c.39]

Для определения напряжений и усилий наряду с расчетом широко используются экспериментальные методы, основанные на различных способах измерения деформаций. Экспериментальными методами решаются следующие задачи  [c.488]

Для определения напряжений и усилий применяют различные методы измерения деформаций. Экспериментально определяют  [c.542]

Вместе с тем установлено, что в реальных конструкциях в зоне примыкания патрубка пластические деформации возникают при весьма низких номинальных напряжениях, составляющих примерно 0,2от- Поэтому для определения фактических внутренних усилий в этой зоне необходимо проведение испытаний крупномасштабных моделей, выполненных из натурного материала и нагруженных в упругопластической области. Кроме того, как отмечалось выше (см. гл. 1, 2, 3), для уточненных расчетов малоцикловой прочности необходимо учитывать кинетику деформированного состояния расчетных сечений при повторном нагружении. Для неосесимметричных задач теории оболочек перераспределение упругопластических деформаций на каждом цикле нагружения может быть изучено в настоящее время преимущественно экспериментальным путем. Проведение таких экспериментальных исследований сопряжено с измерением полей упругопластических деформаций, характеризующихся значительным градиентом при этом возникает необходимость измерения и регистрации больших пластических деформаций в процессе циклов нагружения и малых упругих деформаций при разгрузке. Из известных методов измерения полей упругопластических деформаций на плоскости обычно используются методы оптически активных покрытий, муаровых полос и малобазные тензорезисторы.  [c.139]


Определение местных деформаций и напряжений в элементах конструкций и деталях машин с учетом истории нагружения может быть выполнено экспериментальными методами по данным измерений на моделях и натурных конструкциях (см. гл. 2—7, 9), аналитическими (см. гл. 2, 11) или численными методами с применением ЭВМ (см. гл. 8). В последних случаях определению напряженных и деформированных состояний должно предшествовать определение внешних усилий и температурных полей от тепловых эксплуатационных воздействий.  [c.253]

Экспериментальные методы используются для определения напряжений, деформаций, перемещений и усилий, а также для исследования напряженно-деформированного состояния и прочности инженерных сооружений, конструкций, машин и их элементов при действии различного вида нагрузок (механических, тепловых, инерционных и др.). Они основаны на использовании различных эффектов (геометрических, электрических, оптических, магнитных, тепловых и др.), возникающих при деформировании твердого тела.  [c.526]

Расчет сопряжений оболочек сводится к установлению внутренних усилий и последующей оценки прочности. При этом используются методы, основанные на выполнении условий совместности деформаций сопрягаемых оболочек и шпангоутов [4, 5, 10, 17, 231. При определении краевых перемещений оболочек наиболее распространенным методическим пособием, хорошо зарекомендовавшим себя в практике, является работа [10], где охвачен широкий круг встречающихся схем и которая обеспечивает высокую точность результатов. Сравнительно небольшое число монографий посвящено методам проектирования конструкций на основе решения краевых задач. Практически единственным методическим пособием, рассматривающим влияние на распорный узел подкрепляющего действия присоединенных оболочек, является работа [71, основанная на обобщении экспериментальных данных.  [c.196]

В данной работе выводятся формулы для приближенного определения концентрации напряжений по известным усилиям в гал-тельных сопряжениях оболочек ступенчато-переменной толщины, а также в сопряжениях тонких оболочек с массивными фланцами и круглыми пластинами. Для этого на основании экспериментальных данных и расчетов численными методами теории упругости траектории главных напряжений в меридиональной плоскости в окрестности галтели приближенно заменяются траекториями эллиптических (рис. 2, а) или гидродинамических (рис. 2, б) координатных линий, использованных в работе [6] соответственно для глубоких и мелких выточек (табл. 1). Предполагается, что концентрацией кольцевых напряжении и изменением жесткости галтельного сопряжения, вызванными концентрацией меридиональных напряжений и деформаций, можно пренебречь [2].  [c.76]

В соударяющихся деталях механизмов и машин изменение усилия и напряжений происходит в весьма короткое время, оцениваемое величинами, меньшими 0,001 сек. Это обстоятельство наряду со значительной скоростью движения деталей и сложной зависимостью возникающих деформаций от различных факторов (массы и упругости деталей, зазоров, условий контакта) до последнего времени исключало возможность надежного экспериментального определения напряжений и усилий при соударении деталей. Существующие расчетные методы могли давать практически удовлетворительные результаты лишь в простейших случаях.  [c.138]

До последнего времени в СССР и за границей не было разработанных методов определения динамических усилий, действующих на опору. Отдельные попытки учета их сводились к введению динамических коэффициентов в статические нагрузки, причем значения этих коэффициентов принимались без теоретических или экспериментальных обоснований. Ряд неясностей имелся в расчете опор на кручение как в части прочности, так и в определении деформаций закручивания. Исследования ВНИИПТМАШа [13] дали решение указанных вопросов. Ниже кратко излагаются соответствующие методы расчета.  [c.479]

Развитие методов тензометрии в СССР см. статью Н. И. Пригоровского Экспериментальное определение деформаций, напряжений и усилий в сб. Теоретические основы конструирования машины , Машгиз, 1957,  [c.9]


Статически неопределимые конструкции, составляемые из простейших элементов, дают круг задач, которые могут решаться таким путем. При выполнении расчета усилий, перемещений и напряжений в статически неопределимых системах методами строительной механики возникает необходимость находить упругие характеристики и напряжения в отдельных частях конструкций от известной внешней нагрузки и внешних единичных усилий, прилагаемых в сечениях, которыми рассекается заданная конструкция. Так как отдельные элементы конструкции имеют сложную форму, то определение указанных упругих характеристик и напряжений от заданных нагрузок целесообразнее производить не путем расчета, а экспериментально, выполняя на отдельных простейших тензометрических моделях измерение этих линейных и угловых перемещений и напряжений. Обеспечение условий сопряжения рассмотренных на простейших моделях отдельных элементов в целой статически неопределимой конструкции производится путем расчета с составлением и решением линейных уравнений деформаций, из которых определяются статически неопределимые усилия в сечениях. Напряжения и перемещения в любой точке статически неопределимой конструкции находятся затем сложением замеренных на простейших моделях величин, умноженных на значения соответствующих статически неопределимых усилий.  [c.418]

УНИФИЦИРОВАННЫЕ МЕТОДЫ РАСЧЕТНОГО И ЭКСПЕРИМЕНТАЛЬНОГО ОПРЕДЕЛЕНИЯ НАПРЯЖЕНИЙ, ДЕФОРМАЦИЙ, ПЕРЕМЕЩЕНИЙ И УСИЛИЙ  [c.226]

Настоящее приложение к Нормам содержит рекомендуемые унифицированные методы расчетного и экспериментального определения напряжений, деформаций, перемещений и усилий.  [c.228]

Экспериментальное определение деформаций, напряжений и усилий включает постановку задачи, выбор метода исследования и аппаратуры (принцип измерения, тип и характеристики аппаратуры), проведение измерений и анализ получаемых данных. Экспериментальное определение производится на механических моделях (физическое моделирование), деталях машин и конструкциях в лабораторных, стандовых и эксплуатационных условиях. Современные экспериментальные методы позволяют находить действительные, в том числе наибольшие, вели-  [c.542]

При решении инженерных задан поляризационно-оптическим методом, например, таких, как определение усилий в сечениях элементов машин и конструкций, оценка усталостной прочности и т. ц., имеется необходимость в определении величин напряжений не только на новерхности элемента, но и по его сечениям. Фундаментальным методом разделения напряжений в точках объема модели элемента является метод В. М. Краснова. Этим методом нормальные напряжения в точке находят по их разностям, полученным из поляризационно-оптических исследований модели, и одному из нормальных, напряжений, которое определяют интегрированием соответствующего уравнения равновесия при известных из измерений на модели величинах касательных напряжений. Метод В. ]У1. Краснова является унидерсальным, но требует выполнения большого объема экспериментальных исследований. Поэтому в частных случаях, когда на основании предварительного рассмотрения напряженного состояния элемента известны качественные (и некоторые количественные) зависимости напряжений от граничных условий задачи, применение этого метода не всегда целесообразно. В таких случаях разделение напряжений в точках объема модели выполняется или способами, в которых используются определяемые экспериментальным путем величины (поперечные деформации, сум ма нормальных напряжений), или способами, основанными на других зависимостях теории упругости  [c.53]

Раскрытие трещины и общий механизм хрупкого разрушения. Трудность применения метода линейной механики разрушения к сравнительно вязким конструкционным сталям низкой и средней прочности объясняется тем, что в этих случаях разрушение может быть связано со значительной локальной пластичностью. В таких материалах во время испытания образцов стандартных размеров с надрезом при нормальных скоростях деформации перед разрушением впереди напряженной трещины может распространяться пластическая зона. Вследствие этого невозможно проанализировать упругое напряженное состояние и вычислить показатель вязкости разрушения Кс- Уэллс (1969 г.) разработал метод, приняв, что неустойчивое распространение дефекта происходит при его критическом раскрытии около вершины (критическое раскрытие трещины или OD). Он предполагал, что это значение одинаково для реальных конструкций к образцов небольших размеров подобной толщины. Экспериментальное подтверждение было получено несколькими специалистами. Например, результаты определения разрушающих напряжений для охрупченных труб высокого давления из сплава циркония хорошо согласовывались с данными испытаний на изгиб образцов небольших размеров с надрезом для исследования критического раскрытия трещины (Фернихауф и Уоткинс, 1968 г.). Хорошее соответствие наблюдалось между поведением материалов при инициирующих испытаниях широкого листа и на изгиб образцов натурной толщины для выявления величины критического раскрытия трещины (Бурде-кин и Стоун, 1966 г.). В условиях малой пластической деформации можно показать, что усилие распространения трещины G есть произведение предела текучести Оу и критического раскрытия трещины б  [c.236]


В [9, 10] для построения истинных диаграмм деформирования при больших деформациях был предложен экспериментально-теоретический подход, основанный на совместном анализе результатов натурного эксперимента и численного моделирования процессов деформирования лабораторных образцов или элементов конструкций. В рамках этого метода для определения механических констант материала формируется целевая функция, описывающая различия натурных и численных экспериментов. Параметрами сравнения могут быть силы, перемещения, деформации и др. Далее строится итерационный процесс нахождения механических констант материала. В случае задачи о растяжении образцов за параметр сравнения можно взять осевую силу на торце в зависимости от перемещения. Численное решение задачи в первом приближении производится с использованием диаграммы деформирования, полученной в предположении равномерного деформирования образцов. В последующих приближениях осуществляется корректировка диаграммы деформирования в зависимости от относительной разницы значений осевых усилий в расчете и эксперименте. Таким образом, в [9] была построена диаграмма деформирования для стального (12X18 Н10Т) стержня круглого поперечного сечения до момента разрушения.  [c.116]

Метод хрупкого дорыва используют не только для определения остаточной прочности стеклопластика, но и для оценки параметров кинетического уравнения снижения прочности. Снижение прочности напряженных стеклопластиков при длительном воздействии сред в ряде случаев формально описывается уравнением второго порядка [80], и аппроксимация экспериментальных данных может проводиться в координатах а — i. Иногда можно оценить величину кратковременного напряжения, вызывающего необратимые изменения в материале, по величине сорбции. Так, в экспериментах Мак-Гарри материалы подвергались кратковременному растяжению с последующим определением величины водопоглощения за 24 ч. Подобная методика может быть использована для качественной оценки так называемого удлинения разгерметизации, т.е. деформации стеклопластика, вызывающей появление в полимерной матрице или на меж-фазной поверхности макроскопических дефектов, обеспечивающих перенос среды посредством вязкостного механизма. Однако более надежным способом является определение этой величины на установках, в которых действие растягивающего усилия сочетается с напором среды.  [c.83]


Смотреть страницы где упоминается термин ЭКСПЕРИМЕНТАЛЬНЫЕ МЕТОДЫ ОПРЕДЕЛЕНИЯ УСИЛИИ И ДЕФОРМАЦИИ : [c.286]    [c.5]    [c.25]    [c.10]    [c.65]   
Смотреть главы в:

Теория обработки металлов давлением Издание 2  -> ЭКСПЕРИМЕНТАЛЬНЫЕ МЕТОДЫ ОПРЕДЕЛЕНИЯ УСИЛИИ И ДЕФОРМАЦИИ



ПОИСК



Деформации Определени

Деформации Определение экспериментально

Деформации Усилия

Метод Определение экспериментальное

Метод деформаций

Определение по деформациям

Унифицированные методы расчетного и экспериментального определения напряжений, деформаций, перемещений н усилий

Усилия Определение экспериментально

Усилия — Определение

Экспериментальные методы



© 2025 Mash-xxl.info Реклама на сайте