Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Инфракрасная область спектра

Для вычисления степени черноты металлов при меньших длинах волн в инфракрасной области спектра Хагеном и Рубенсом [18] получено следующее соотношение  [c.28]

Для инфракрасной области спектра проверка теории была осуществлена при исследовании потерь на отражение для ряда  [c.105]

Таким образом, для инфракрасной области спектра наблюдается удовлетворительное согласие теории, развитой Друде, с данными эксперимента и открывается возможность вычисления а и с по формулам (2.27) из экспериментально найденных оптических констант металла п и лае. Следует отметить, что обратный путь (получение п и пае из измерения а и е) не приводит к успеху, так как в области столь высоких частот отсутствуют достаточно точные методы определения этих электрических констант.  [c.106]


Заметим, что исходные положения излагаемой теории пригодны не только для описания колебаний оптических электронов, но их можно использовать для учета вынужденных колебаний ионов с частотами, соответствующими инфракрасной области спектра (ш .ион = //Л ион о.ал)- Такое расширение теории приводит к интересным следствиям ( см. 4.3).  [c.140]

Зависимость (8. 37) показана пунктиром на рис. 8.10 по сравнению с кривой г, для черного те ла, отлично согласующейся с данными опыта. Лишь в далекой инфракрасной области спектра можно обнаружить соответствие между эксперименталь ной кривой и формулой Рэлея—Джинса, а для излучения более коротких длин волн наблюдается резкое расхождение результата, полученного применением классической теории и данными опыта. В частности, из формулы Рэлея—Джинса следует, что вопреки опыту для любой температуры г - при л - О.  [c.422]

Существенные трудности возникают при использовании фотоумножителей в инфракрасной области спектра. Как уже указывалось, наличие красной границы фотоэффекта делает в этом случае невозможным применение фотокатодов, прекрасно работающих в видимой и ультрафиолетовой областях. Для измерений в инфракрасной области используют фотодиоды, механизм действия которых основан на внутреннем фотоэффекте.  [c.442]

Не менее часто нам приходится сталкиваться с преобразованием волн одной частоты в волны другой частоты. В приборах ночного видения излучение инфракрасной области спектра (у=10 Гц) преобразуется в излучение видимой области (Ю " - Ю Гц). Для передачи радиосигнала используется  [c.137]

Указанные области резкой абсорбции атомов соответствуют частотам собственных колебаний электронов внутри атомов. В случае газов, молекулы которых построены из нескольких атомов, обнаруживаются также собственные частоты, соответствующие колебаниям атомов внутри молекулы. Так как массы атомов в десятки тысяч раз больше массы электрона, то эти молекулярные собственные частоты обладают гораздо большими периодами, т. е. соответствуют инфракрасной области спектра.  [c.564]

За последние годы особое развитие получил анализ молекулярного состава сложных смесей, основанный на измерении поглощения в ультрафиолетовой и особенно в инфракрасной областях спектра. Спектры поглощения многих органических молекул оказываются очень характерными, благодаря чему удается надежно устанавливать как молекулярный состав, так и количественное содержание отдельных компонент в смеси.  [c.567]

Опыт показал, однако, что ход зависимости, изображенный на рис. 32.7, не всегда имеет место. У ряда металлов, особенно щелочных, для которых красная граница лежит далеко в видимой и даже в инфракрасной области спектра и которые, следовательно, чувствительны к широкому интервалу длин волн, наблюдается следующая особенность сила тока имеет резко выраженный максимум для определенного спектрального участка, быстро спадая по обе его стороны селективный, или избирательный, фотоэффект, рис. 32.8). Селективность фотоэлектрических явлений очень напоминает резонансные эффекты. Дело происходит так, как будто электроны в металле обладают собственным периодом колебаний, и по мере приближения частоты возбуждающего света к собственной частоте электронов амплитуда колебаний их возрастает и они преодолевают работу выхода.  [c.644]


Для генерации и наблюдения инфракрасного излучения того же лазера необходимо иметь прозрачные для него торцовые окна газоразрядной трубки, зеркала резонатора с высокими значениями коэффициента отражения в инфракрасной области спектра и, разумеется, приемник, чувствительный к инфракрасному излучению, например, болометр или фотодиод.  [c.793]

Собственное поглощение. Оно связано с переходами электронов из валентной зоны в зону проводимости. Выше уже отмечалось, что в идеальном полупроводнике при 7 = 0К валентная зона заполнена электронами полностью, так что переходы электронов под действием возбуждения в состояние с большей энергией в этой же зоне невозможны. Единственно возможным процессом здесь является поглощение фотона с энергией, достаточной для переброса электронов через запрещенную зону. В результате этого в зоне проводимости появляется свободный электрон, а в валентной зоне—дырка. Если к кристаллу приложить электрическое поле, то образовавшиеся в результате поглощения света свободные носители заряда приходят в движение, т. е. возникает фотопроводимость. Таким образом, для фотонов с энергией hvдлин волн (т. е. больших hv) имеет место сплошной спектр интенсивного поглощения, ограниченный более или менее крутым краем поглощения при hvмежзонное поглощение может быть связано с прямыми или непрямыми оптическими переходами.  [c.307]

Кривая дисперсии раствора цианина показана на рис. 21.3. Область аЬ приходится на полосу поглощения, где показатель преломления уменьшается, т. е. имеет аномальный ход. За пределами полосы поглощения ход зависимости показателя преломления от длины волны соответствует обычному нормальному ходу дисперсии, т. е. с уменьшением Я показатель преломления медленно увеличивается. У прозрачных веществ (например, стекло, кварц и др.) в видимой области нет полос поглощения, поэтому показатель преломления у них имеет нормальный ход. Однако по мере продвижения в ультрафиолетовую или инфракрасную область спектра, где есть полосы поглощения, показатель преломления начинает довольно быстро изменяться. Таким образом, полная дисперсионная картина для любого вещества состоит из областей аномальной дисперсии, соответствующих областям внутри полос или линий поглощения, и областей нормальной дисперсии, расположенных между полосами поглощения.  [c.82]

Исходные положения электронной теории справедливы не только для описания колебаний оптических электронов, но и для учета вынужденных колебаний ионов с частотами, соответствующими инфракрасной области спектра.  [c.91]

Оптическая пирометрия объединяет в себе комплекс методов, с помощью которых можно измерять температуру тела в достаточно широком интервале. Диапазон температур, измеряемых в оптической пирометрии, теоретически неограничен. Нижняя граница определяется большей частью чувствительностью приемников излучения. Большинство методов оптической пирометрии основано на измерении интенсивности излучения или поглощения исследуемого тела в ультрафиолетовой, видимой или инфракрасной областях спектра. Интенсивность излучения или поглощения связывается обычно с температурой при помощи законов теплового  [c.146]

В настоящее время самые мощные газодинамические лазеры работают в инфракрасной области спектра на оптических переходах между колебательными уровнями молекул углекислого газа. Получена генерация в газодинамических лазерах с применением оксида углерода (II), оксида азота и сероуглерода.  [c.292]

Если источником возбуждающего излучения служит неодимовый лазер (Я=1,06 мкм), то первая стоксова компонента в водороде имеет длину волны 1,9 мкм, а вторая — длину 8,6 мкм. Если энергия в импульсе длительностью 50 нм для лазера составляет около 100 Дж, то для первой стоксовой компоненты она равна около 5 Дж, а для второй — около 1 Дж. Таким образом, при сравнительно несложном оборудовании можно получить импульсное излучение в инфракрасной области спектра с мощностью порядка 20 МВт. Комбинируя рассеивающие среды на основе вынужденного комбинационного рассеяния, можно получать перестраиваемые лазеры в широком диапазоне длин волн.  [c.315]


Чистые щелочно-галоидные кристаллы прозрачны в видимой области спектра. При длинах волн, превышающих границу собственного поглощения, свет поглощается только в инфракрасной области спектра, что обусловлено колебаниями узлов кристаллической решетки (ионами) под действием возбуждающей электромагнитной волны и происходит при частоте порядка 10 Гц.  [c.164]

На рис. 1-11 [б] представлены опытные данные по степени черноты алюминия при различной обработке его поверхности. Для чистых металлических поверхностей степень черноты уменьшается равномерно при увеличении Я в инфракрасной области спектра, причем 8 имеет весьма низкие значения. Степень черноты полированной поверхности ниже, чем просто чистой. Для анодированной поверхности характер зависимости е от Я резко меняется. Это происходит потому, что при анодировании на повеЬхности металла образуется сравнительно толстое окиское покрытие, которое проявляет характерные особенности неметаллов. Чем толще анодное покрытие, тем более отчетливо проявляется  [c.29]

Излучательная способность неметал-л о в. Диэлектрики имеют общую тенденцию к росту спектральной степени черноты с увеличением длины волны. Однако из-за наличия локальных полос лучеиспускания в инфракрасной области спектра изменение е( , Т) по длине волны может быть не монотонным,  [c.30]

Теоретический расход холода (тепла) в этом случае должен равняться тепловыделениям (теплопоглощению) человека, что должно дать экономию в мощности по крайней мере в 5 раз. Однако практически невозможно осуществить поверхность, не поглощающую тепловых лучей. Поглощенное тепло отводится от поверхностей путем конвекции к воздуху комнаты. Это является первым источником теплопотерь. Кроме того, необходимость смены воздуха в помещении (проветривание) требует охлаждения (нагрева) приточного воздуха. Поэтому практически экономия холода (тепла) получается меньшей. Одноэтажный дом, в котором была осуществлена опытная установка кондиционирования воздуха, имел следующие показатели общая площадь 168 м объем 460 м площадь наружных стен 149 м площадь остекления 56 м . Стены — бревенчатые (0150 мм) с обшив кой из красного дерева, пол — бетонный по земле, крыша— плоская с изоляцией войлоком. Стены и потолок были оклеены внутри тисненными обоями из плотной бумаги, покрытой слоем алюминиевой фольги толщиной 0,01 мм. Фольга в свою очередь была покрыта тонким слоем (1 мкм) подкрашенного лака, прозрачного в инфракрасной области спектра, но поглощающего тепловое излучение в видимой части спектра. Цвета этого лака подбирались так, чтобы, создав приятное для глаз восприятие, не уменьшать значительно отражательную  [c.238]

Принцип работы электрофотометра основан на электрическом действии света (фотоэлементы, фотоусилители, фотосопротивления и т. д.). Самый простой фотоэлектрический фотометр состоит из фотоэлемента и соединенного с ним высокочувствительного гальванометра. Если измерить электроток, создаваемый действием света, то можно вычислить освещенность поверхности фотометра. Проградуировав гальванометр непосредственно в люксах, можно получить величину освещенности. В качестве фотоусилителей могут быть использованы так называемые фотоэлектронные усилители (ФЭУ). Выбор того или иного ФЭУ обусловлен спектральным составом измеряемого светового потока. Так, например, для красной и близкой инфракрасной областей спектра применяются фотоусилнтели ФЭУ-62, ФЭУ-22. Для сине-зеленой области применимы ФЭУ-17, ФЭУ-18, ФЭУ-19 и т. д. ФЭУ-18, ФЭУ-39 рассчитаны на работу в ультрафиолетовой и сине-зеленой областях спектра. ФЭУ-106 применяется как в видимой, так и в ультрафиолетовой и инфракрасной областях спектра.  [c.20]

На практике обычно пользуются отражательными эшелонами, предложенными в 1933 г. Вильямсом (рнс. 6.33) и называемыми обыч1ю эшелонами Майкельсона — Вильямса. Эшелон Майкельсона — Вильямса состоит из ряда пластин из плавленого кварца. Специальная обработка пластин позволяет добиться оптического контакта. В результате все устройство как бы вырезано из одного куска плавленого кварца. Спектральные характеристики, в том числе и разрешающая способность эшелона Майкельсона — Вильямса, выше разрешающей способности эи1елоиа Майкельсона. Отражательный эшелон ввиду большой трудности его изготовления почти не применяется в видимой области спектра. Он обычно используется в миллиметровой, микроволновой и инфракрасных областях спектра. В этих областях не требуется столь высокой точности изготовления пластин. В принципе эшелон Майкельсона — В1 пзямса можно было бы использовать также в ультрафиолетовой области. Однако это связано с очень высокой, практически неосуществимой точностью изготовления. В ультрафиолетовой и длинноволновой рентгеновской областях применяются вогнутые дифракционные решетки. Связано это еще и с тем, что вогнутые решетки, как известно, одновременно выполняют роль  [c.153]

В результате прогресса лазерной техники и успешного развития радиотехнических методов преобразования частоты в оптическом диапазоне удалось существенно повысить точность измерения скорости света в вакууме. При этом проводились независимые измерения длины волн и частоты специально стаби-лизированног о неон-гелиевого лазера, генерирующего в инфракрасной области спектра (л = 3..39 мкм). Таким способом в 1972 г. скорость света была определена с большой точностью (iSf/ = 3 10 ). Авторы получили с = (299792,4562 0,0011) км/с и считают, что в дальнейшем ошибка может быть еще уменьшена за счет улучшения воспроизводимости измерения первичных эталонов длины и времени (см. 5.7).  [c.51]

Сложнее выглядит интерферограмма на рис. 5. 51,6 произвольного сигнала- Однако, так же как и более простые графики в верхней части рисунка, она однозначно связана со спектром сигнала. Чтобы найти этот спектр, гфедставленный в левой части рис. 5.51,в, надо провести Фурье-анализ интерферограммы. В некоторых случаях такая сложная методика оказывается более результативной, чем прямой анализ спектра каким-либо спект-paj7bHbiM прибором. Так, например, в далекой инфракрасной области спектра в Фурье-спектрограмме получается оптимальное соотношение сигнал/шум.  [c.236]


Можно изготовить такую решетку с профилированным штрихом, которая обеспечит зпачител1.ную интенсивность в 20-м или 30-м порядке, но тогда придется соответственно уменьшить число штрихов на единицу длины. Гак работают дифракционные решетки в инфракрасной области спектра эшелетт). Е1 последние годы созданы аналогичные решетки для видимой и ультрафиолетовой областей (эшель), которые с успехом используют в оригинальных спектральных приборах.  [c.322]

Для того чтобы завершить рассмотрение стандартных приложений законов черного тела, кратко охарактеризуем эффективность тех или иных источников при использовании их для целей освещения. Хорошо известно, что лампа накаливания с вольфрамовой нитью вошла в практику в конце прошлого столетия и сыграла громадную роль в условиях жизни и труда людей во всем мире. По сей день этот простой и удобный источник света широко используют в быту и на производстве. Многочисленные научные и инженерные исследования позволили увеличит] срок службы лампы накаливания и другие ее эксплуатационные качества, но мало что могли изменить в зф(1зективности этого источника света, т.е, в увеличении доли энергии, которая может быть использована для целей освещения окружающего пространства. Достаточно взглянуть на рис. 8.1, где изображена светимость черного тела для двух температур, а вертикальными линиями ограничена видимая часть спектра (4000 — 7000А), чтобы оценить, сколь малая доля излучения черного те.па может быть эффективно использована в этих целях, даже в том случае (Т = 5000 К), когда /-макс совпадает с зеленой областью спектра, в которой чувствительность глаза наибольшая. Расчеты показывают, что при этих оптимальных условиях лишь около 13% всей излучаемой энергии может быть использовано для освещения. Значительно меньшая часть энергии черного тела может быть утилизирована в том случае, когда его температура составляет примерно 3000 К и максимум излучения находится в инфракрасной области спектра (вблизи 1 мкм). Дальнейшее уменьшение температуры черного тела приведет к еще более низкому коэффициенту использова1шя излучаемой энергии.  [c.415]

Не менее часто нам приходится сталкиваться с преобразованием волн одной частоты в волны другой частоты. В приборах ночного видения излучение инфракрасной области спектра (v=10 Гц) преобразуется в излучение видимой области (Ю - 10Гц). Для передачи радиосигнала испо 1ьзуется амплитудно-частотная модуляция, то есть колебания с частотой, которую способно воспринимать человеческое ухо (50-12000 Гц), передаются при  [c.337]

Спектрометрия в инфракрасной области спектра не может производиться с помощью вакуумных фотоэлементов и ФЭУ по той причине, что совре у1енные фотокатоды имеют красную границу не выше 1100 нм. Однако уже сейчас известны материалы, позволяющие продвинуться до 3—4 мкм. Поэтому в инфракрасной области применяются фотоэлементы, работающие на основе внутреннего фотоэффекта. Сюда следует отнести неохлаждаемые фоторезисторы на основе 1п5Ь, РЬЗе и РЬЗ, которые могут быть использованы до 6 мкм, и глубоко охлаждаемые фоторезисторы на основе германия, легированного золотом, цинком, медью и другими металлами, пригодные до 40 мкм.  [c.652]

Первые лазерные голограммы были получены с помощью гелий-неонового лазера с длиной волны излучения >,==0,6328 мкм, работающего на нейтральных атомах. Существующие гелий-неоновые лазеры могут генерировать непрерывные колебания также в ближней инфракрасной области спектра на следующих длинах волн 1,15 мкм и 3,36 мкм, имеющие узкие спектральные линии, что позволяет с их помощью получать 1олограммы сцен глубиной в несколько десятков метров. Однако малая мощность излучения таких лазеров (0,1—0,5 мВт) ограничивает возможность их применения, так как в. этом случае для получения голограммы требуется большое время. экспозиции, составляющее десятки минут. При увеличении мощности гелий-неоновых лазеров путем увеличения длины газоразрядной трубки увеличивается и ширина спектральной линии, так что при мощности 100 мВт гелий-неоновый лазер позволяет регистрировать сцены глубиной не более 20 см.  [c.36]

Решеточное поглощение наблюдают в ионных кристаллах или в кристаллах, в которых связь между атомами в какой-то степени является ионной (например, в бинарных полупроводниках InSb, GaAs и т. д.). Такие кристаллы можно рассматривать как набор электрических диполей. Эти диполи могут поглощать энергию электромагнитного (светового) излучения. Наиболее сильным поглощение будет тогда, когда частота излучения равна частоте собственных колебаний диполей. Поглощение света, связанное с возбуждением колебаний кристаллической решетки, называют решеточным. Решеточное поглощение наблюдают в далекой инфракрасной области спектра.  [c.312]

Источник излучения должен быть тщательно выбран в соответствии с исследуемой областью опактра. Для работы в инфракрасной области используется накаливаемый глобар , изготовленный из спеченного карбида кремния. Для видимой и ближней инфракрасной областей спектра (до 2,5 мкм) применяется ленточная вольфрамовая лампа. Излучение в ультрафиолетовой области спектра получают с помощью газоразрядных ламп (например, водородных).  [c.168]

Аналогичную структуру имеют и другие серии водорода. Линии серии Лаймана лежат в далекой УФ-области спектра. Головная линия этой серии имеет Х= 121,6 нм. Серии Пашена и Брэкета расположены в инфракрасной области спектра.  [c.53]


Смотреть страницы где упоминается термин Инфракрасная область спектра : [c.244]    [c.45]    [c.226]    [c.235]    [c.154]    [c.55]    [c.437]    [c.462]    [c.101]    [c.749]    [c.792]    [c.852]    [c.280]    [c.294]    [c.315]    [c.288]    [c.29]   
Смотреть главы в:

Практические применения инфракрасных лучей  -> Инфракрасная область спектра



ПОИСК



GaH2, ацетилен инфракрасные полосы в фотографической области спектра

Градуировка шкалы длин волн инфракрасной области спектр

Дисперсия и отражение ионных кристаллов в инфракрасной области спектра

Интерполяционные формулы М. Герцбергера для вычисления показателя преломления в инфракрасной области спектра

Инфракрасные спектры

Материалы для ультрафиолетовой и инфракрасной областей спектра

Окуляры для ультрафиолетовой и инфракрасной областей спектра

По инфракрасная

СН„ метан полосы в фотографической области инфракрасного спектра

Спектры поглощения в инфракрасной области различных растворителей

Ф. И. К., фотографическая область инфракрасного спектра

Шарфштейн О целесообразной спектральной области для оптической пирометрии в инфракрасных спектрах разреженных пламен и низкотемпературной плазмы, полученной при сжигании углеводородных топлив



© 2025 Mash-xxl.info Реклама на сайте