Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Лабораторные методы определения скорости света

Лабораторные методы определения скорости света  [c.422]

Лабораторные методы определения скорости света, позволяющие производить эти измерения на коротком базисе, дают возможность определять скорость света в различных средах и, следовательно, проверять соотношения теории преломления света. Как уже неоднократно упоминалось, показатель преломления света в теории Ньютона равен п — sin i/sin г = v /v , а в волновой теории п = sin i/sin т = где — скорость света в первой среде,  [c.427]


Замечание, Одним из наиболее интересных методов определения скорости света в лабораторных условиях является метод высокочастотного модули-  [c.417]

Метод вращающегося зеркала (метод Фуко). Метод определения скорости света, разработанный в 1862 г. Фуко, можно отнести к первым лабораторным методам. С помощью этого метода Фуко осуществил измерения скорости света в средах, для которых показатель преломления п> 1.  [c.200]

Измерение скорости света от земного источника в лабораторных условиях впервые было выполнено Физо в 1849 г. Пучок света прерывался зубчатым колесом, вращавшимся перед источником света, и отражался от зеркала, находившегося на расстоянии около 9 км. Если за время движения светового импульса до зеркала и обратно колесо повернется на такой угол, что на месте прорезей окажутся зубья, вернувшийся свет не попадет в окуляр и поле зрения окажется темным. При вдвое большей угловой скорости вернувшийся световой импульс проходит через следующую прорезь и наблюдатель видит источник. Очевидно, что в этом случае для определения скорости света нужно разделить путь от колеса до зеркала и обратно на время поворота колеса на один зубец. Современная модификация метода Физо основана на прерывании света с помощью практически безынерционного оптического затвора (конденсатора Керра, см. 4.5). Это позволяет значительно повысить точность, несмотря на сокращение длины базиса до нескольких метров.  [c.127]

Для отражения на светочувствительной или специальной диаграммной бумаге микропрофиля поверхности в увеличенном масштабе применяются профилографы. Заводом Калибр выпускается профилограф-профилометр Калибр-ВЭИ , позволяющий оценивать шероховатость 6—14-го классов. Прибор снабжен устройством для записи профилограмм и позволяет определять высоту микронеровностей по Яа, как и в профилометре КВ-7М. Колебания алмазной иглы прибора преобразуются индуктивным методом в изменения напряжения электрического тока. К оптическим приборам для измерения шероховатости поверхности 3—9-го классов в лабораторных условиях относится двойной микроскоп МИС-11 конструкции акад. В. П. Линника. Для оценки шероховатости 10—14-го классов применяются интерференционные микроскопы МИИ-1 и МИИ-5 и др. Действие приборов основано на интерференции света. Для определения высоты микронеровностей в труднодоступных местах применяют метод слепков, заключающийся в том, что на исследуемую поверхность наносят пластические материалы (пластмассу, желатин, воск и др.) и по полученному отпечатку судят о степени шероховатости поверхности. Шероховатость поверхности и точность зависят от способов механической обработки, а при одном и том же способе — от режимов обработки (скорость резания и подачи), свойств и структуры обрабатываемого материала, вибрации инструмента и детали в процессе обработки, жесткости системы СПИД и др. Помимо шеро-  [c.41]


Задача определения скорости света принадлежит к числу важнейших проблем оптики и физики вообще. Решение этой задачи имело огромное принципиальное и практическое значение. Установление того, что скорость распространения света конечна, и измерение этой скорости сделали более конкретными и ясными трудности, стоящие перед различными оптическими теориями. Первые методы определения скорости света, опиравшиеся на астрономические наблюдения, способствовали со своей стороны ясному пониманию чисто астрономических вопросов о затмениях отдаленных светил и о годичном параллаксе звезд. Точные лабораторные методы определения скорости света, выработанные впоследствии, используются при геодезической съемке. Теоретическое обоснование и экспериментальное исследование принципа Допплера в оптике сделали возможным решение задачи о лучевых скоростях светил или движущихся светящихся масс (протуберанцы, каналовые лучи) и привели к весьма широким астрономическим обобщениям. Сравнительное измерение скорости света в вакууме и различных средах послужило в свое время в качестве ехрег1теп1ит сгис1з для выбора между волновой и корпускулярной теориями света, а впоследствии привело к понятию групповой скорости, имеющему большое значение и в современной квантовой физике. Сравнение скорости распространения света с константой с максвелловской теории, обозначающей, с одной стороны, отношение между электромагнитными и электростатическими единицами заряда, а с другой — скорость распространения электромагнитного поля, сыграло важнейшую роль при обосновании электромагнитной теории света. Наконец, вопрос о влиянии движения системы на скорость распространения света и вся обширная совокупность связанных с ним экспериментальных и теоретических проблем привели к формулировке эйнштейновского принципа относительности — одного из самых значительных обобщений  [c.417]

Как уже упоминалось, лабораторные методы определения скорости света представляют собой, по существу, усовершенствования метода Галилея. Удачными оказались два приема способ Физо, автоматизирующий моменты пуска и регистрации возвращающегося сигнала (прерывания), и метод Aparo — Фуко, основанный на точном измерении времени пробега светового сигнала (вращающееся  [c.422]

Я перенес главу, посвященную основным фотометрическим понятиям, во введение, желая использовать правильную терминологию уже при описании явлений интерференции и оставив в отделе лучевой оптики лишь вопросы, связанные с ролью оптических инструментов при преобразовании светового потока. Заново написаны многие страницы, посвященные интерференции, в изложении которой и во втором переработанном издании осталось много неудовлетворительного. Я постарался сгруппировать вопросы кристаллооптики в отделе VIII, хотя и не счел возможным полностью отказаться от изложения некоторых вопросов поляризации при двойном лучепреломлении в отделе VI, ибо основные фактические сведения по поляризации мне были необходимы при изложении вопросов прохождения света через границу двух сред, с которых мне казалось естественным начать ту часть курса, где проблема взаимодействия света и вещества начинает выдвигаться на первый план. Я переработал изложение астрономических методов определения скорости света и добавил некоторые новые сведения о последних лабораторных определениях этой величины. Гораздо больше внимания уделено аберрации света. Рассмотрены рефлекторы и менисковые системы Д. Д. Максутова. Значительным изменениям подверглось изложение вопроса о разрешающей способности микроскопа я постарался отчетливее представить проблему о самосветя-щихся и освещенных объектах. Точно так же значительно подробнее разъяснен вопрос о фазовой микроскопии, приобретший значительную актуальность за последние годы.  [c.11]

Первая оценка скорости света в вакууме была проведена еще в конце XVn в. и базировалась на астрономических наблюдениях. Было замечено, что промежуток времени между затмениями ближайшего спутника Юпитера уменьшается при сближении с Землей и увеличивается при их расхождении. Анализируя эти наблюдения, Ремер предположил, что свет распространяется с конечной скоростью, равной 3,1см/с. Эта смелая идея находилась в противоречии с господствующими тогда взглядами школы Декарта, согласно которым свет должен распространяться мгновенно. В XIX в. усилиями Физо, Фуко и других физиков, развивавших волновую теорию света, были проведены тщательные измерения этой константы. При этом использовались различные лабораторные устройства. В частности, применялся метод вращающегося зеркала, который был в начале XX в. усовершенствован Майкельсоном, определившим скорость света с высокой точностью. Мы не будем подробно рассматривать эти тонкие и остроумные исследования. Укажем лишь, что во всех таких опытах фактически измеряется время, необходимое для прохождения импульсом света вполне определенного пути. Таким образом, в результате эксперимента измеряется скорость светового импульса, точнее, скорость некоторой его части. Например, можно вести измерения по переднему или заднему фронту сигнала, исследовать область максимальной энергии импульса и т. д.  [c.45]



Смотреть страницы где упоминается термин Лабораторные методы определения скорости света : [c.423]    [c.129]   
Смотреть главы в:

Оптика  -> Лабораторные методы определения скорости света



ПОИСК



Методы лабораторные

Методы определения скорости света

СКОРОСТЬ СВЕТА Скорость света и методы ее определения

Скорость Определение

Скорость света

Скорость света лабораторные



© 2025 Mash-xxl.info Реклама на сайте