Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Характеристики материалов скорости деформации

Диссипативные силы. При колебаниях упругих систем происходит рассеяние энергии в окружающую среду, а также в материале упругих элементов и в узлах сочленения деталей конструкции. Эти потери вызываются силами неупругого сопротивления—диссипативными силами, на преодоление которых непрерывно и необратимо расходуется энергия колебательной системы или возбудителей колебаний. Для описания диссипативных сил используются характеристики, представляющие зависимость диссипативных сил от скорости движения масс колебательной системы или от скорости деформации упругого элемента. Вид характеристики определяется природой сил сопротивления. Наиболее распространенные характеристики диссипативных сил представлены на рис. 10.8.  [c.279]


Обычные механические характеристики материалов определяются при испытаниях в нормальных условиях, т. е. при температуре около 20° С и небольших скоростях нагружения. Нормальной скоростью деформации считается величина  [c.40]

Важнейшими свойствами остаются реологические характеристики деформируемых материалов в широком диапазоне термомеханических условий обработки металлов давлением. Создание общей теории реологических определяющих уравнений, устанавливающих общую форму связи между напряжениями, деформациями, скоростями деформаций и температурой для различных металлов и сплавов является одной из фундаментальных проблем современной теории обработки металлов давлением.  [c.4]

Например, с ростом скорости деформации в ряде работ [9, 128] было замечено повышение пластических характеристик исследуемых материалов, а в других работах [14, 17] отмечалось снижение уровня кривых текучести с ростом е для ряда сталей и сплавов, хотя это противоречит традиционным понятиям о влиянии скорости деформации на прочность и пластичность металлов.  [c.60]

В монографии представлены результаты исследования механического поведения конструкционных материалов под действием импульсных нагрузок ударного и взрывного характера. Рассмотрена связь процессов нагружения и деформирования материала при одноосном напряженном состоянии. Описаны оригинальные методики и средства квазистатических испытаний на растяжение со скоростями до 950 м/с. Приведены результаты испытаний ряда металлических материалов и реологическая модель их механического поведения учитывающая влияние на сопротивление скорости деформации. Исследовано упруго-пластическое деформирование и разрушение материала в плоских волнах нагрузки. Описаны новые методики и изложены результаты экспериментальных исследований зависимости характеристик ударной сжимаемости н сопротивления пластическому сдвигу за фронтом плоской волны от ее интенсивности, связи силовых и временных характеристик откольной прочности.  [c.2]

В настоящее время определяющих уравнений состояния, позволяющих описать реологическое поведение материалов с учетом режима нагружения, нет, поэтому для выполнения расчетов используются упрощенные модели материала [153, 225, 323], неотражающие всей сложности поведения материала в процессе-деформации и, следовательно, применимые для ограниченного диапазона условий нагружения. Успехи в построении уравнений состояния на основе физических механизмов пластической деформации, например на основе дислокационной модели пластического течения [74, 175, 309], имеют ограниченное значение. Зависимость сопротивления деформации от мгновенных условий нагружения (температура, скорость деформации и др.) и всей истории предшествующего нагружения, которая определяет изменение в процессе деформирования большого числа параметров, характеризующих микро- и макроструктуру материала, за исключением некоторых частных случаев, не позволяет в настоящее время дать количественную оценку инженерных характеристик сопротивления материала.  [c.15]


Изменение в процессе нагружения модулей упрочнения, разупрочнения и коэффициента вязкости, их зависимость от скоростных и температурных условий нагружения позволяет объяснить эффекты, связанные с деформированием материалов при различных скоростях и температурах зависимость сопротивления материала деформации от режима нагружения [3], изменение коэффициентов вязкости близких по составу и механическим характеристикам материалов [146], и др. Однако пренебрежение отдельными видами процессов в материале, например процессами разупрочнения при высоких скоростях деформации или вязкой составляющей сопротивления при низких уровнях нагрузки, недопустимо без достаточной экспериментальной проверки.  [c.27]

Скоростные испытания, которые обеспечивают получение прочностных и деформационных характеристик материалов при повышенных скоростях деформации, не связанных с ударным нагружением. Их длительность лежит в диапазоне секунды —  [c.62]

Результаты квазистатических испытаний с высокими скоростями деформации используются в основном для определения влияния скорости на характеристики прочности и пластичности исследуемых материалов.  [c.116]

Для экспериментального исследования зависимости характеристик прочности и пластичности при растяжении от скорости деформации в широком диапазоне ее изменения (Ю-" —3-10 с- ) были выбраны армко-железо, сталь 45 и алюминиевый сплав Д16, химический состав которых представлен в табл. 3. Выбор указанных материалов обусловлен их различной чувствительностью к скорости деформации, существенным различием характеристик прочности и пластичности, возможностью сравнения с результатами исследований, проведенных другими авторами.  [c.121]

Характеристики скорости абсолютные скорости (падения маятника V или скорость встречи бойка с преградой Vq), скорость относительной деформации г и скорость волновых процессов (скорость звука С в данном материале), а также безразмерное отношение скорости деформации или трещины к скорости звука v/ .  [c.177]

Известно, что в общем случае деформация и разрушение материала зависят от того, каким образом изменяется нагрузка ио времени. Многочисленные исследования [5.29— 5.31] показали, что характеристики композитов изменяются при динамическом приложении нагрузки. Если взять в качестве примера материалы на полимерной основе, армированные стекловолокном, то придем к выводу, что на механические характеристики этих материалов оказывают существенное влияние не только температура, конфигурация, но и скорость приложения нагрузки (в действительности скорость деформации).  [c.131]

Из рис. 6.4 можно видеть, что на ударное поведение композита могут оказывать влияние такие факторы, как структура материала (характеристики композита, содержание компонентов в нем, особенности распределения фазы и форма конструкции), окружающие условия (температура, влажность и др.), условия нагружения внешними силами (скорость удара, растяжение, сжатие, изгиб, сдвиг и т. д.). Поэтому точное описание и определение поведения композита представляют собой сложную задачу. Исследование поведения таких материалов при высоких скоростях деформаций можно проводить аналитически, экспериментально или же в случае необходимости использовать комбинированные методики, содержащие как теоретические, так и экспериментальные элементы. При исследовании поведения материала можно выделить два этапа  [c.148]

Дисперсно-упрочненные композиционные материалы содержат матрицу, в которой равномерно распределены дисперсные частицы, не взаимодействующие активно с матрицей. Так как в таких материалах основную силовую нагрузку несет матрица, то тонкодисперсные частицы, равномерно распределенные в ней, препятствуют движению дислокаций до температуры начала плавления и тем самым способствуют повышению всех прочностных и деформационных свойств. При нормальных и высоких температурах прочностные характеристики дисперсно-упрочненных материалов линейно зависят от формы и размеров зерен и могут быть с известным приближением рассчитаны по эмпирическим формулам. Они также зависят от температуры и скорости деформации. В дисперсно-упрочненных композиционных материалах взаимодействие компонентов должно быть минимальным. К этому классу композиционных материалов можно также отнести материалы, в которых матричная и упрочняющая фаза состоят из более крупных частиц.  [c.239]


Сопротивление пластическому деформированию возрастает с увеличением скорости деформирования. Это означает, что кривая деформирования может быть сдвинута в область более высоких напряжений при тех же уровнях деформаций за счет увеличения скорости деформирования при испытаниях. Однако в области обычных скоростей этой эффект невелик. Надаи [51, например, установил, что для стали с 0,35%-ным содержанием углерода увеличение скорости в 10 ООО раз лишь вдвое повышает сопротивляемость текучести. Тем не менее этот эффект достаточно важен, и поэтому требуется стандартизация скоростей деформирования при испытаниях, чтобы получаемые в различных лабораториях характеристики материалов можно было сопоставлять между собой.  [c.43]

Скорость деформации является одним из важнейших внешних факторов, влияющих на сопротивление материалов пластическому течению и разрушению. Увеличение скорости нагружения изменяет свойства металла. Материалы с близкими характеристиками прочно-  [c.35]

В труде Я- Б. Фридмана Механические свойства металлов [46] описывается много и других неопределенностей, в том числе в характеристике предела ползучести Пределом ползучести считается то постоянное напряжение, которое вызывает за определенное время при постоянной температуре деформацию заданной величины (например, 1 % за 100 часов или 1% за 100 000 часов) или определенную скорость деформации в течение заданного промежутка времени (например, 10 2% в час, или 10 % в час). До сих пор не ясно, существ(ует ли абсолютный предел ползучести (напряжение, ниже которого нет пластической деформации при длительном напряжении при повышенных температурах). Ввиду стремления к максимальной экономии веса и размеров деталей, работающих при повышенных температурах, большей частью нецелесообразно ориентироваться на чрезмерно низкие напряжения . Для ориентации воспользуемся данными, приведенными в курсе сопротивления материалов Н. М. Беляева.  [c.97]

Диаграммой, или кривой деформирования материала, называют график зависимости, связывающий напряжение и деформацию при заданной программе внешнего воздействия. Диаграмма деформирования при пропорциональном нагружении, полученная при постоянных скорости деформации и температуре, представляет собой обобщенную характеристику материала, отражающую его сопротивление упругому и пластическому деформированию вплоть до начала разрушения. Такую диаграмму обычно получают при испытаниях на растяжение или на чистый сдвиг (основные типы испытаний), а также при испытаниях на сжатие (последнее — обычно только для хрупких материалов).  [c.20]

Анализ отпечатков позволяет сделать выводы о влиянии скорости деформации на пластические характеристики материала. Ударная проба Бринелля используется также с той же целью, что и статическая проба для сравнения и контроля характеристик материалов. При этом устройства для такой пробы проще пресса Бринелля и могут быть использованы в любых производственных и полевых условиях.  [c.324]

Реологические характеристики материала определяют его реакцию на скорость деформации. Для понимания этого вопроса весьма полезным является введенные Я. Б. Фридманом [292] ТЕОнятия упругой и диссипативной составляющих сопротивления материала механическому воздействию. Последняя в свою очередь состоит из суммы членов, связанных со скоростью деформирования (вязкое сопротивление) и с величиной остаточной деформации (пластическое сопротивление). Бесконечно медленное приложение внешней нагрузки приводит к равновесию ее с силой упругого сопротивления образца. С ростом уровня внешней нагрузки сила упругого сопротивления постепенно переходит в упругопла-стическое. В этом случае, еслп материалу п присуще вязкое сопротивление, то оно себя не проявляет.  [c.307]

При резании металлов главным фактором, влияющим на коэффициент трения и определяющим в значительной степени другие контактные характеристики, является температура в зоне контакта (119]. Процессы упрочнения и разупрочнения приконтактных слоев, действуя одновременно, конкурируют между собой [120). Высокие скорости деформации существенно увеличивают истинные напряжения в контактном слое (при температурах 600-800 в 2-2,5 раза). Это явление наиболее ярко проявляется при обработке высокопластичных, упрочняемых в процессе деформации нержавеющих жаропрочных материалов, при резании которых микротвердость прирезцовых поверхностей стружек, например, увеличивается в 1,5-2 раза [119].  [c.223]

Л 9. Степанов Г. В. Характеристики прочности и пластичности конструкционных материалов при высоких скоростях деформации. Киев Институт проблем прочности АН УССР, 1978. 78 с.  [c.346]

Основное условие получения достоверных результатов в ква-зистатических испытаниях — поддержание с заданной точностью однородности напряженного и деформационного состояния материала в объеме рабочей части образца. Это позволяет принимать регистрируемые зависимости между напряжением и деформацией за характеристики поведения локального объема материала. Таким методом определены характеристики сопротивления материалов деформированию в большинстве проведенных до настоящего времени исследований, в основном при испытаниях на растяжение или сжатие со скоростями до 10 м/с [69, 167, 208, 210, 305, 406, 409]. Область более высоких скоростей деформирования, особенно при испытаниях на растяжение, обеспечивающих получение наиболее полной информации о поведении материала под нагрузкой, практически не исследована. Такое ограничение исследований обусловлено тем, что с ростом скорости деформации возрастает влияние волновых процессов и радиальной инерции в образце и цепи нагружения, ведущих к нарушению однородности деформации и одноосности напряженного состояния в объеме рабочей части образца и затрудняющих приведение усилий и деформаций в материале. Уменьшение влияния этих эффектов требует разработки специальных методик для испытаний с высокими скоростями деформации.  [c.13]


Существенные затруднения, возникающие при исследованиях с высокими скоростями деформации и обусловленные необходимостью сохранения равномерного деформирования по длине рабочей части образца и одноосности его напряженного состояния как основных условий получения достоверной информации в квазистатических испытаниях, являются основной причиной недостаточного объема имеющихся экспериментальных данных о высокоскоростном деформировании материалов. Ограничения длины и диаметра образца, необходимые для обеспечения равномерности его деформирования, определяются условиями (2.8) и (2.9). Невыполнение этих условий при высоких скоростях деформирования снижает достоверность экспериментальных результатов и может привести к количественному и качественному искажению зависимости характеристик прочности и пластичности от скорости деформации. Несоблюдение ограничений иа предельные размеры рабочей части образца (из конструктивных соображений) ограничивает результаты высокоскоростных испытаний получением только качественной информации о влиянии скорости деформирования на механические характеристики материала, тем более что нагрузка регистрируется по деформации динамометра в упругой волне с искажением, вызванным дисперсией волны при ее распространении.  [c.116]

В то же время следует напомнить, что сохраняют свое значение и традиционные методы испытания гладких образцов. В случае технических испытаний таких форм материалов, как лист или проволока, другого выбора, как правило, нет. Накоплен оченп большой объем информации о взаимосвязи поведения гладких образцов с различными эксплуатационными характеристиками материалов. Эти данные останутся полезными только при условии, что в дальнейшем, наряду с испытаниями, применяемыми в механике разрушения, будут проводиться и исследования на гладких образцах [6]. В случае сравнительно вязких материалов проведение испытаний по определению времени до разрушения или по исследованию зависимости о — К на образцах с предварительно наведенной трещиной может быть затруднено, особенно если прочность материала мала и изменение полного сечения образца препятствует проведению испытаний уже на ранней стадии. С большой осторожностью следует интерпретировать также поведение образцов, применяемых в механике разрушения, характеризуемых высокими скоростями деформации в вершине трещины и очень чувствительных к влиянию загрязнений [302]. Этим и другим подобным вопросам необходимо уделять внимание, чтобы использование методов механики разрушений не стало скорее модным, чем полезным.  [c.125]

Механические и оптические характеристики материалов для моделей, применяюш ихся при исследованиях поляризационнооптическим методом, можно определять при испытаниях нескольких видов, среди которых необходимо отметить испытания на ползучесть, релаксацию, при постоянной скорости деформации и при синусоидальных колебаниях. Каждому из этих испытаний присущи свои достоинства и недостатки, а также своя область применения. По мнению авторов, очень прост метод двойного маятника, а даваемые им результаты непосредственно применимы  [c.146]

Скоростные испытания обеспечивают получение прочностных и деформационных характеристик материалов при повышенных скоростях деформации. В основном для нагружения образцов материалов используют кинетическую энергию падающего груза или запас упругой энергии газа в пнев-могидравлических системах.  [c.94]

Для исследования динамических диаграмм напряжение — деформация материалов при нормальных температурах используют мерные стержни Гопкинсона. Сущность метода испытаний сводится к тому, что образец располагают между торцами двух мерных стержней и нагружают импульсом давления, возбуждаемым в одном из стержней. Напряжение, деформацию, скорость деформации образца определяют по известным соотношениям теории упругих волн из условий равенства усилий и перемещений соприкасающихся торцовых сечений образца и стержней. При этом предполагают, что амплитуда импульса давления и предел прочности исследуемого материала образца ниже предела пропорциональности материала стержней. Применение указанного метода при повышенных температурах связано с трудностями измерений упругих характеристик материала стержней и деформаций. На рис. 8 приведена функциональная схема устройства для исследования влияния температуры на динамические прочностные характеристики металлов при одноосном сжатии. Исследуёмый образец 6 расположен между мерными стержнями 5 и S. Импульс давления возбуждают в стержне 5 с помощью взрывного нагружающего устройства, состоящего из тонкого слоя взрывчатого вещества 1, ударника 2 и демпфера 3. При взрыве в стержне возникает импульс сжатия трапецеидальной формы, характеристики которого зависят от плотности материала и диаметра демпфера, а также соотношения толщины демпфера и слоя взрыв-  [c.111]

В связи с тем что в последующем нас будет интересовать главным образом структура уравнения и влияние на искомую температуру таких параметров, как нагрузки, скорости, коэффициент трения, твердости поверхностей и теплофизические характеристики материалов тел, будем пользоваться средними значениями интенсивности нагрузки на фактическом пятне касания. Так, для фрикционного контакта в случае преобладания пластических деформаций неровностей средний радиус пятна касания (г ф) можно оценить по формуле [8] Гф= (NfP nY /2, где N - нагрузка Рф = сОрР = НВ В - твердость по Бринеллю п - количество пятен, составляющих фактическую площадь касания тел с - коэффициент. Получим уравнения для определения температур при наиболее характерных, малых и больишх скоростях перемещения тепловых источников. Подставляем величину радиуса в формулу, например для определения температурной вспышки при высоких скоростях перемещения тел  [c.177]

Для узлов высокотемпературных установок учет процесса ползучести должен производиться прежде всего из условия ограничения деформации изделия во время работы. Это требование является особо актуальным для деталей высокой точности, например, цилиндров или роторов турбин, и при использовании материалов с ограниченной деформаДион-ной способностью. Для установок с малой общей длительностью работы (не более нескольких сот часов), как например, узлов авиационных газовых турбин или ракетных установок, учитывается обычно общая деформация за заданный период времени. Для деталей, работаюитих длительный срок, принимают во внимание лишь накопление деформации на участке установившейся ползучести. За характеристику ползучести принимают значение предела ползучести о — напряжения, вызывающего заданную скорость деформации или заданное общее значение ее при температуре эксплуатации. Для узлов стационарных энергетических установок обычно под пределом ползучести понимают напряжение, вызывающее 1% деформации за 10 ч, и обозначают как где Т — температура испытания в °С,  [c.19]

Общие принципы характеристики деформационно-прочностных свойств полимеров и типичные диаграммы напряжение — деформация были обсуждены в гл. 1. Оценка деформационнопрочностных свойств материала с помощью диаграмм напряжение — деформация является наиболее распространенным видом механических испытаний материалов. Этот метод очень важен с практической точки зрения и получаемые результаты привычны для инженеров. Однако связь результатов таких испытаний с реальным поведением материала в изделии не так проста, как иногда кажется. Так как вязкоупругость полимеров обусловливает высокую чувствительность их механических свойств к различным факторам, диаграммы напряжение — деформация только приближенно предсказывают поведение полимера в изделии. Обычно диаграммы напряжение — деформация или даже только их характерные точки получают для одной температуры и одной скорости деформации. Для набора информации, необходимой для инженера-конструктора, требуется проведение испытаний при нескольких температурах и скоростях деформации, что занимает много времени и связано со значительным расходом материалов. Обычно имеются данные о деформационно-прочностных свойствах при растяжении или изгибе, хотя часто необходимо знать результаты испытаний при сжатии и сдвиге, в том числе не только при одноосном, но и при двухосном нагружении. Поэтому очевидно, что, используя обычно имеющиеся данные о деформационнопрочностных свойствах полимерных материалов, инженер-конструктор должен в значительной мере полагаться на интуицию и опыт, что часто приводит к перестраховке или к ошибкам при конструировании изделий.  [c.152]


Очень важным следствием из теории А. И. Леонова является возможность расчета релаксационного спектра по кривым течения. В частности, из этой теории вытекает, что определение точки перегиба на кривой зависимости (Ig 7) позволяет легко найти максимум релаксационной функции N (s), где N — функция распределения частот релаксации (величин обратных временам релаксации), так как у = as, причем а — постоянный коэффициент. Можно легко показать, что N (s) = — (as) т) (as), где (as) — первая производная вязкости по релаксационной частоте. Точка перегиба на кривой (Ig у) отвечает условию dN/ds = 0. Также просто находится время / после начала опыта в условиях у = = onst, когда наступает интенсивное разрушение структуры материалов. Оказывается, что / = а/у. Следовательно, в согласии с опытными данными возрастание скорости деформации приводит к быстрому уменьшению времени достижения максимума на кривых т (/) при у — onst. Рассматриваемая теория позволяет определить достижение максимума функции xjxy = / (у) и многие другие важные реологические характеристики материалов. Отсюда следует, что измерение вязкости у материалов с неньютоновским поведением важно отнюдь не только для расчета процессов их течения, но имеет фундаментальное значение для характеристики их реологических свойств.  [c.125]

Таблица "Материал - Код" является основной в нашем банке данных. Здесь каждому материалу присвоен уникальный индекс, дано его описание. Ключевым является поле "Код". При необходимости (в соответствии с наложенными отношениями) можно идентифицировать данные по выбранному материалу, например, с таблицей "Источник", где хранится вся информация об авторах, названии статьи, рецензии и т.д. Данные по размерам испытываемых образцов разделены на отдельные таблицы по геометрическим формам прямоугольные, цилиндрические, конусные и т.д. Возможность использования механизма OLE (Obje t Linking and Embedding - Связывание и Внедрение Объектов) позволяет хранить и использовать в работе фотографии и чертежи образцов, испытательных установок и устройств, полученных фафиков и гистограмм. В качестве базовых механических характеристик взяты такие параметры, как предел прочности а , предел текучести Oj, прочность на разрыв S , относительные сужение v(/ и удлинение S. Они хранятся в таблице "Механические свойства". Кроме того, согласно ГОСТ 9454-78, в зависимости от жесткости напряженного состояния и скорости деформации выбираются три вида ударной вязкости K V, КСи и КСТ. В системе предусмотрена также возможность классифицировать испытания по виду и режиму нагружения, по температуре проведения экспериментальных исследовании. Как обязательный параметр введена таблица "Химические свойства", где данные приведены либо по химическим элементам отдельно, либо берутся из соответствующих ГОСТов. Загрузка информационных массивов является оче гь важным и ответственным этапом автоматизации исследований. В качестве первоисточников служат любые публикации, содержащие фактографические сведения о физико-механических (химических) свойствах материалов. Это могут быть научные статьи, монографии, справочники, ГОСТы и др. Таблица "Материал - Код" является основной в нашем банке данных. Здесь каждому материалу присвоен уникальный индекс, дано его описание. Ключевым является поле "Код". При необходимости (в соответствии с наложенными отношениями) можно идентифицировать данные по выбранному материалу, например, с таблицей "Источник", где хранится вся информация об авторах, названии статьи, рецензии и т.д. Данные по размерам испытываемых образцов разделены на отдельные таблицы по <a href="/info/161520">геометрическим формам</a> прямоугольные, цилиндрические, конусные и т.д. <a href="/info/544815">Возможность использования</a> механизма OLE (Obje t Linking and Embedding - Связывание и <a href="/info/559169">Внедрение Объектов</a>) позволяет хранить и использовать в <a href="/info/311553">работе фотографии</a> и чертежи образцов, испытательных установок и устройств, полученных фафиков и гистограмм. В качестве базовых <a href="/info/7719">механических характеристик</a> взяты такие параметры, как <a href="/info/1682">предел прочности</a> а , <a href="/info/1680">предел текучести</a> Oj, прочность на разрыв S , <a href="/info/33914">относительные сужение</a> v(/ и удлинение S. Они хранятся в таблице "Механические свойства". Кроме того, согласно ГОСТ 9454-78, в зависимости от жесткости <a href="/info/183899">напряженного состояния</a> и <a href="/info/420">скорости деформации</a> выбираются три вида <a href="/info/4821">ударной вязкости</a> K V, КСи и КСТ. В системе предусмотрена также возможность классифицировать испытания по виду и режиму нагружения, по температуре проведения <a href="/info/5792">экспериментальных исследовании</a>. Как обязательный параметр введена таблица "Химические свойства", где данные приведены либо по <a href="/info/64561">химическим элементам</a> отдельно, либо берутся из соответствующих ГОСТов. Загрузка информационных массивов является оче гь важным и ответственным этапом автоматизации исследований. В качестве первоисточников служат любые публикации, содержащие фактографические сведения о <a href="/info/430754">физико-механических</a> (химических) свойствах материалов. Это могут быть научные статьи, монографии, справочники, ГОСТы и др.
Зависимости напряжейий от характера деформирования материала за пределом упругости являются намного более сложными, чем в области упругих деформаций. Характеристики поведения материалов при пластическом деформировании, как впрочем и любые данные о теплофизических свойствах материалов, либо измеряются в экспериментах, либо получаются с помощью физических теорий пластичности. Точно так же, как и в случае уравнений состояния, экспериментальные и теоретические данные используются при построении математических теорий пластичности. Эти теории опираются в основном на гипотезы и предположения феноменологического характера. Их характерной чертой является математическая простота, необходимая для проведения расчетов и качественного анализа поведения конструкций. Математические теории пластичности можно разделить на два вида теории упругопластических деформаций и теории пластического течения. Первые являются обобщением теории упругости и опираются на уравнения, определяющие связь между напряжениями и деформациями. Вторые опираются на уравнения, связывающие напряжения со скоростями деформаций. Многочисленные экспериментальные данные показывают, что уравнения упругопластического деформирования должны содержать напряжения, деформации и скорости деформаций [31, 32]. С позиций такого подхода теории упругопластических деформаций и теории пластического течения должны рассматриваться как асимптотические теории, справедливые в случаях, когда одно из свойств материала пренебрежимо мало по сравнению с другими.  [c.73]

У материалов, разрушающихся вязко, увеличение размеров образцов (так называемый масштабный фактор) практически не влияет на характ-еристики жесткости и прочности, но существенно сказывается на характеристиках пластичности ё уменьшается при увеличении длины образца (отношения lid), а ф — с увеличением абсолютных размеров сечения. Увеличение скорости деформации ведет к повышению прочности и снижению пластичности.  [c.6]

Будем полагать, что болт и гайка изготовлены из материалов с одинаковыми характеристиками ползучести и что скорости деформаций .... связаны с напряжениями о,,,. . ., . . зависимостями установивн1ейся ползучести  [c.161]

Так, материалы, нечувствительные к скорости деформации (сталь 45 в высокопрочном состоянии и армко-железо при 77 К), имеют равные характеристики сопротивления разрушению при циклическом и статическом нагружении. Для сталей 10ГН2МФА и 15Г2АФДпс, чувствительных к скорости деформаций, вязкость разрушения при циклическом нагружении существенно ниже статической характеристики и близка к величинам, полученным при динамических испытаниях.  [c.326]

В пользу предложенного объяснения свидетельствует и тот факт, что вязкость разрушения сталей 10ГН2МФА и 15Г2АФДпс при циклическом нагружении с частотой нагружения 0,05 и 50 Гц и с наложением ударов на гармоническое нагружение имеет одинаковые значения. Очевидно, даже при циклическом нагружении с небольшой частотой при инициировании хрупкого разрушения в циклически деформированной пластической области в вершине трещины скорость деформации впереди движущейся трещины повышается настолько, что увеличение скорости приложения нагрузки в 1000 раз уже не приводит к дальнейшему увеличению скорости деформации в вершине трещины и, следовательно, к снижению величины критического коэффициента интенсивности напряжений. Снижение величины критического коэффициента интенсивности напряжений, полученной при монотонном нагружении, до величины, полученной при циклическом нагружении, происходит по экспоненциальной зависимости от числа циклов нагружения и завершается за 10 циклов (см. рис. 225). Это снижение происходит несколько интенсивнее при симметричном нагружении, чем при пульсирующем. Большое практическое значение имеет разработка методов классификации конструкционных материалов по чувствительности характеристик вязкости разру-  [c.326]


Смотреть страницы где упоминается термин Характеристики материалов скорости деформации : [c.83]    [c.4]    [c.125]    [c.146]    [c.210]    [c.13]    [c.140]    [c.409]    [c.139]    [c.283]    [c.316]   
Сопротивление материалов (1959) -- [ c.72 ]



ПОИСК



Деформации скорость

Материалы — Характеристики

Скорости Характеристики

Характеристики деформации

Характеристики прочности и пластичности металлических материалов при высоких скоростях деформации



© 2025 Mash-xxl.info Реклама на сайте