Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Единичного перемещения метод

Единичного перемещения метод 42, 76, 440, 472  [c.533]

Для записи уравнений частот (3-17) необходимо знать величины единичных перемещений бг - Этот вопрос решается методами строительной механики. Одним из путей, облегчающих расчет стержневых систем на колебания, является отыскание наиболее простого способа определения перемещений. Н. К- Снитко [Л. 64] в связи с этим указывает, что дальнейшее упрощение методов определения частот может иметь место путем упрощений при определении единичных перемещений.  [c.115]


Поскольку закрепленная балка не имеет поворота в узле В, теперь необходимо наложить другое условие нагружения с тем, чтобы учесть действительный поворот узла. Этот шаг облегчается приложением к закрепленной конструкции единичного неизвестного перемещения это аналогично соответствующему шагу в методе податливостей, когда берутся единичные значения лишних неизвестных. Единичный поворот ф=1) показан на рис. 11.25, с. Реакция на конце В, соответствующая неизвестному перемещению D узла, представляет собой коэффициент влияния жесткости 5, поскольку она вызывается единичным перемещением конструкции. Эта жесткость, согласно формулам, приведенным на рис. 11.24, а, составляет  [c.472]

Аналогия для определения температурных напряжений Соответствие температурных напряжений напряжениям, получаемым по методу дислокаций [47 ] или напряжениям, соответствующим единичным сосредоточенным силам [19] Напряжения и перемещения в моделях от единичных перемещений или нагрузок Определение напряжений и перемещений от изменения температур в деталях плоской или объемной формы  [c.257]

Можно определить напряжения в конической оболочке и краевые напряжения в зоне сопряжения цилиндрической и конической оболочек под действием усилий и X . Определение их обычными методами строительной механики (методом сил или перемещений) не представляет затруднений. Определение единичных перемещений для ортотропной цилиндрической оболочки рассмотрено в п. 1 гл. II. Из общих уравнений теории ортотропных оболочек можно получить единичные перемещения и для ортотропной конической оболочки. Основную особенность представляет расчет фланцевого соединения, поскольку нагрузка на болты и прокладку, определяющая прочность и плотность фланцевого соединения, зависит от массовой нагрузки и жесткости элементов фланцевого соединения.  [c.110]

Теперь вычислим частоту ср для балки, изображенной на фиг. 437. Предварительно нужно вычислить единичное перемещение Зи- Применяя с этой целью энергетический метод (см. 77), вспомним, что  [c.537]

Определение перемещений методом единичной нагрузки (см. стр. 58). Прогибы и углы поворота поперечных сечений балки, изгибаемой в главной плоскости уг, определяются с помощью интеграла Мора  [c.124]

Решение. Единичные перемещения найдены методами статики увеличенные в 48 16 Е/ Р раз, они имеют значения  [c.186]


Перемещения v и в = v, которые обозначим одной буквой б, могут быть определены универсальным методом единичной нагрузки с помощью интеграла Мора или способом Верещагина.  [c.216]

Для того чтобы воспользоваться уравнениями (24.12) и (24.13), необходимо знать перемещения на поверхности искомой трещины. Для определения перемещений щ удобно воспользоваться методом Н. И. Мусхелишвили с применением отображающей функции (1э( ), переводящей границу берегов трещины в окружность единичного радиуса, а внешность трещины во внешность круга. Предположим, что уравнение траектории определяется зависимостью  [c.198]

При определении перемещений энергетическими методами положительное значение в ответе говорит о том, что направление перемещения совпадает с принятым направлением приложенной единичной обобщенной силы.  [c.56]

В отличие от метода начальных параметров, где знаки перемещений определяются выбранной системой координат, при нахождении перемещений энергетическим методом система координат отсутствует и правило знаков здесь следующее перемещение (линейное или угловое) получается положительным, если его действительное направление совпадает с направлением единичного силового (фактора (единичной силы или единичного момента). В противном случае, т.е. при обратном направлении единичной силы и прогиба или единичного момента а угла поворота сечения, искомое перемещение получается отрицательным.  [c.38]

При применении метода Мора положительное значение искомого перемещения получается в случае, если его направление совпадает с направлением приложенной единичной силы (момента).  [c.138]

Определение перемещений производится методом Мора (с использованием, там где это возможно, правила Верещагина), поэтому оказывается удобным выразить перемещения Дхх,. Дхл, и т. д. через перемещения Зц, 0 2 и т. д. от единичных сил, приложенных взамен лиш-  [c.161]

Пользуясь методом Мора, по правилу Верещагина получаем величины единичных и грузовых перемещений  [c.170]

Н. А. Кильчевский [24], применив преобразование Лапласа, получил приближенные выражения для закона изменения контактной силы во времени Р (t) при ударе и оценил условия, при которых применима статическая зависимость силы от перемещения с учетом собственных колебаний соударяющихся тел. Для определения контактных деформаций он применил теорию Герца, а для решения задачи о колебании соударяющихся тел — теорию Тимошенко. Методом последовательных приближений он рассмотрел единичный удар и повторное соударение при поперечных ударах шара по балке. Справедливо обосновав положение, что на первом этапе (до достижения максимальной контактной силы) основное влияние на процесс удара оказывают местные деформации сжатия, а на втором (при упругом восстановлении) — колебания балки и шара, Н. А. Кильчевский предложил расчетные формулы для вычисления наибольшей силы взаимодействия между шаром и балкой, а также продолжительности контакта. Полученные громоздкие зависимости им упрощены и распространены на широкую группу контактных задач. В работе [24] при применении интегрального преобразования проведена аналогия между зависимостью контактной деформации и силой удара (предложенной Герцем) в пространстве изображений и оригиналом, т. е.  [c.10]

Здесь б(/ — перемещение, энергетически соответствующее силе Ql, вызванное единичной силой Q . Величины 6р определяются известными методами, например. по Мору.  [c.28]

Рассуждения о главных осях жесткости и о центре жесткости можно обосновать обычными методами. Предположим, что единичные силы Рд-=1, Ру= 1, Рг =1, которые действуют в направлении осей координат х, у, z, вызывают по этим осям следующие малые линейные и угловые перемещения фундамента на пружинах  [c.175]

Вычисленные по теории упругости [11] перемещения и напряжения в сечениях, проходящих через площадки контакта, существенно нелинейны. Эпюры осевых перемещений имеют характер ломаных линий, в которых явно выделяются два участка, близких к линейным, — по самой площадке контакта и по остальной части сечения, и небольшой переходной участок. Эта нелинейность имеет местный характер и распространяется на глубину, примерно равную утроенной ширине площадки контакта, что позволило при определении местных коэффициентов податливости ограничить расчетные зоны узлов. Коэффициенты податливости в местах контакта находились для всех рассмотренных узлов как разность усредненных методом наименьших квадратов перемещений (от единичных нагрузок) соответственно по площадке контакта и остальной части сечения. Поскольку вычисление этих коэффициентов от изгибающих моментов и нормальных (осевых) нагрузок имеет свои особенности, эти два случая рассматриваются отдельно.  [c.134]


Методы выверки на расточных станках. Расточные станки обычно оборудуются точными масштабными линейками, по которым производится перемещение на нужные расстояния шпиндельной коробки и стола для повышения точности отсчётов применяются оптические линзы. Основные методы выверки и обеспечения точности расположения отверстий в корпусных деталях по главнейшим элементам на расточных станках, в условиях единичного и серийного производства без применения приспособлений приведены в табл. 35 [6, 9, 10. 11, 12].  [c.188]

Перемещения представляют собой обычные, известные из строительной механики перемещения. Так, 5 есть перемещение по направлению i степени свободы, т. е. места расположения г-массы от единичной силы, приложенной по направлению перемещения -массы. Подсчет перемещения Ь. производится обычными методами. Развернув определитель, получим алгебраическое уравнение, в котором члены расположены по восходящим степеням ш  [c.44]

Правка алмазным роликом с индивидуальным электроприводом вращения может быть использована на круглошлифовальных станках взамен любой правки единичным алмазом. Устройство для правки с кареткой продольного перемещения монтируют на шлифовальной бабке станка. Врезное шлифование профильным алмазным роликом может быть также использовано для профилирования круга по всей его ширине. Метод эффективен в массовом производстве  [c.396]

Описанные методы компенсации позволяют снизить влияние температурных деформаций на линейные перемещения шпинделя. Компенсация угловых поворотов шпинделя из-за неравномерности нагрева, например, стенок колонны станка представляет большие трудности. Для компенсации угловых поворотов шпинделя рекомендуется метод направленного нагрева (охлаждения) с помощью единичных нагревателей или тепловых труб (элементов охлаждения). Осуществляют нагрев (охлаждение) другой стороны колонны, что уменьшает угол ее наклона. Применяют также специальные компенсирующие механизмы.  [c.592]

Эти показания пропорциональны значениям Вд и 8, причем коэффициент пропорциональности определялся градуировкой по эталону шероховатости. Для получения надежных данных бралось всегда среднее значение из 10 определений 8ц и 8 на соседних участках образца. Однако трудность приготовления пластин с одинаковой по всей поверхности щероховатостью все же понижала точность определения, тем более что отсчет при каждом единичном определении делался несколько неопределенным из-за колебаний значений 8 вдоль пути ощупывающей иглы. Поэтому для устранения этой неопределенности и получения значений щероховатости, усредненных вдоль пути иглы, была применена иная, отличающаяся от обычной, схема измерений 1. Идея этого метода состоит в следующем. После интегрирующего контура прибора ток, индуцированный перемещениями иглы профилометра, пропускался через купроксный выпрямитель и далее через баллистический гальванометр (с периодом около 15 сек.). Вместо пластинок исследуемыми образцами служили цилиндры, которые могли приводиться в направлении своей оси в возвратно-поступательное движение от мотора через редуктор и кулачковое приспособление. Ток от иглы замыкался на определенное короткое время х посредством ключа, приводимого в действие от того же редуктора. Момент замыкания и размыкания тока устанавливался с таким расчетом, чтобы регистрировать результаты ощупывания иглой средней части образующей цилиндра, соответствующей заданной скорости относительного движения щупа.  [c.141]

Трактуя параметры Oj как сосредоточенные деформации (углы поворота узлов и их линейные смещения), а Mi я Мт как эпюры моментов в статически неопределимой основной системе, состоящей из прямых стержней с п введенными связями (подвижные заделки и стерженьки) от единичных перемещений этих связей, получаем п уравнений метода перемещений (г).  [c.24]

Системы упругие — Определение перемещений по методу единичной силы (метод Максвелла-Мора) 1 (2-я)—188 -- О оеделение перемещений с помощью подсчёта энергии 1 (2-я) — 188  [c.264]

Величина приведенных масс, расположенных в вершинах стоек, равна половине массы т , вычисляемой по формуле (3). Для 0ТОЙ системы записывается определитель (8). Единичные перемещения подсчитывают методами строительной механики для рамной системы, приведенной на рис. 23. Коэффициенты А. вычисляются по формуле  [c.47]

Принимая в качестве возможных перемеп1,ений единичные перемещения по направлениям всех связей, кроме тех, в которых перемещения заданы, получаем систему линейных алгебраических уравнений относительно неизвестных перемещений у и zt ,-, у. Для решения этой системы используется итерационный метод — метод релаксации [19] с ускорением сходимости по Л. А. Люстернику. Составленная по этой методике универсальная программа [18] применительно к машине IGL4-50, 4-70 позволяет область произвольного очертания вписывать в поле размером 100 X 200 шагов, число неизвестных смещений может быть до 4000. Во время счета используется только оперативная память машины.  [c.105]

Для решения плоских задач механики разрушения, а также сквозных трещин в толстых пластинах, подвергнутых растягивающим и изгибающим нагрузкам, был использован еще один вариант описанной выше концепции суперпозиции [76—78]. В рамках этого подхода, который аналогичен глобально-локальной формулировке метода конечных элементов [79], пробные функции перемещений, используемые в гфинципе виртуальной работы, состоят из двух частей (1) из множества обычных (несингулярных) конечно-элементных базисных функций, которые, если их рассматривать в качестве глобальных функций формы, соответствующих единичному перемещению на каждом узле, будут иметь ненулевые значения только на элементах, содержащих рассматриваемый узел в качестве общего (т. е. имеют локальный носитель) (2) из аналитического решения, которое включает в себя изменения напряжения типа l/ /r и О (г), причем это решение справедливо глобально.  [c.210]


Исследуйте связь между методом единичных перемещений и уравнением (2.49). Исследуйте также связь между методом единичной нагрузки и теоремой Кастнльяно.  [c.77]

ЗУ. Как следует направлять единичные нагрузки при определении перемещений пнергетическим методом  [c.65]

При применении метода Мора положительное значение искомого перемещения получается в том случае, если его направление совпадает с направлением пршюженной едизшчной силы (единичного момента). Знак минус указывает на то, что искомог перемещение направлено против действия этой единичной силы (единичного момента).  [c.109]

Определение единичного (3 ) и грузового (Д р) перемещений будем вести методом Мора с применением правила Верещагина. Основная система с заданной нагрузкой показана на рис. 7-32, а и на рис. 7-32, б дана соответствуювтая эпюра моментов Мр. Основная система, нагруженная единичной силой, приложенной взамен лишней неизвестной Х, представлена на рис. 7-32, в, а на рис. 7-Ъ2,г дана эпюра  [c.164]

Этот распространенный метод расчета рам, впервые предложенный Кроссом [19], является по существу приближенным методом определения концевых моментов элементов, которые далее могут быть определены с любой желаемой степенью точности. При использовании метода следует рассмотреть три состояния 1) моменты в защемленной балке 2) реактивные моменты для всех элементов, сходящихся в узел 3) моменты, возникающие в закрепленном сечении балок при действии моментов, приложенных к противоположным концам. Два последних состояния могут быть легко описаны методом перемещений. Рассматриваемый метод предусматривает использование коэффициентов жесткости, соответствующих моменту, вызывающему единичный поворот опертого сечения балки с защемленным противоположным концом. Примеры применения этого и других обсуждаемых здесь методов приведены в книге Сатерленда и Боумена [78].  [c.146]

Пек и Гёртман рассматривали полубесконечную среду, ограниченную плоскостью Xi = 0 и нагружаемую равномерно распределенным по границе нормальным давлением. Зависимость внешнего давления от времени выбиралась в форме ступеньки— единичной функции Хевисайда. Касательные напряжения на границе не задавались вместо этого при Х = 0 было наложено требование равенства нулю перемещений, параллельных осям Xi и лгз. Подобные смешанные граничные условия обычны для задач о механических волноводах, поскольку они позволяют построить решение путем наложения бесконечных синусоидальных волновых пакетов. Было найдено точное решение для компоненты dujdxi тензора деформаций в виде суперпозиции синусоидальных мод — бесконечной суммы интегралов Фурье по бесконечным интервалам. Асимптотическое приближение к точному решению для больших значений времени и больших расстояний было построено при помощи метода перевала.  [c.372]

Эти значения L (xi) и г х- являются теперь начальными для интегрирования прогоночных уравнений (11.75), (11.76) при д ЛГ1. Может показаться, что метод факторизации, в котором интегрирование методом начальных параметров исходной линейной системы дифференциальных уравнений (11.59) заменяется двукратным интегрированием нелинейных уравнений (11.75) и (11.76), не имеет существенных преимуществ. Однако это не так. Именно в тех случаях, когда вследствие краевых эффектов метод начальных параметров неприменим, метод факторизации приводит к хорошим результатам, так как элементы матрицы L и вектора г меняются медленно и могут быть легко определены численным интегрированием уравнений (11.75) и (11.76). Это видно, например, из графиков, представленных на рис. 11.3, которые показывают характер изменения по длине цилиндрической оболочки постоянной толщины (радиус R, толщина К) одного из решений однородного уравнения осесимметричной деформации г/ц х) = sh рл X X sin рх и элемента матрицы податливости, соответствующего перемещению, вызываемому единичной поперечной силой  [c.476]

Данные рекомендации обеспечивают снижение уровней вибрации, особенно существенное при распределении исходного дисбаланса, близком к линейному. Окончательное подавление первой собственной формы происходит на втором этапе уравновешивания, выполняемом на рабочих скоростях с использованием самоуравновешенных блоков из трех грузов, укрепленных в тех же сечениях по длине вала. При этом нужно найти три груза (статические моменты крайних грузов равны половине статического момента среднего и направлены в противоположную сторону), которые, не нарушая полученной ранее уравновешенности в зоне низких оборотов, минимизировали бы опорные реакции на верхней балансировочной скорости. Искомые величины и угловое положение грузов соответствуют устранению векторной суммы амплитуд реакций или перемещений опор (замеренных в выбранном неподвижном направлении) в координатах, связанных с вращающимся валом. Задача решается с помощью динамических коэффициентов влияния, представляющих в данном случае векторную сумму амплитуд перемещений или реакций опор в тех же координатах от единичной самоуравновешенной системы трех грузов при заданной скорости. В машинах с большими отклонениями от линейных зависимостей придется прибегать к методу последовательных приближений и выделять колебания с частотой вращения вала.  [c.89]

Пусть А (t) — переходная функция или реакция системы (в механической системе — перемещение) при воздействии на нее единичной силы, ( ф (t) = 0 при t < 0 иг1з (i) = 1 при t > 0). Обозначим, как и ранее, г) (i) внешнюю возмущающую силу, действующую на механическую систему с датчиком, и представляющую собой преобразующее устройство, служащее для измерения неэлектрических величин электрическим методом.  [c.169]

Фиг. 49. Вертикальный фрезерный эубообкатной станок с неподвижной стойкой /—стойка салазок фрезерной головки 2—фрезерная головка фрезерный шпиндель 4—стол для закрепления изделия 5—сменные шестерни скоростной настройки станка в— вал для передачи движения фрезерному шпинделю и диференциалу 7-дифе-ренциал червячная пара диференциала 9—гитара деления / —гитара подач //—гитара диференциала 72—делительная червячная пара привода стола /3—приводной шкив /4—трёхступенчатыи перебор для изме нения величины подачи J<5—винт для перемещения стола /d—винт для перемещения салазок фрезерной головки /7—механизм реверсирования направления подачи /5—зубчатое колесо, передающее движение механизму подач при работе методом единичного деления /9—кнопка для включения колеса 18 2(7—эксцентричная втулка, поворотом которой включается или выключается червяк, сцепляющийся с червячным колесом а. Фиг. 49. Вертикальный фрезерный эубообкатной станок с неподвижной стойкой /—стойка салазок <a href="/info/186892">фрезерной головки</a> 2—<a href="/info/185630">фрезерная головка фрезерный</a> шпиндель 4—стол для закрепления изделия 5—<a href="/info/83086">сменные шестерни</a> скоростной <a href="/info/97646">настройки станка</a> в— вал для <a href="/info/227714">передачи движения</a> фрезерному шпинделю и диференциалу 7-дифе-ренциал <a href="/info/153392">червячная пара</a> диференциала 9—гитара деления / —гитара подач //—гитара диференциала 72—делительная <a href="/info/153392">червячная пара</a> <a href="/info/436122">привода стола</a> /3—<a href="/info/508368">приводной шкив</a> /4—трёхступенчатыи перебор для изме нения величины подачи J<5—винт для перемещения стола /d—винт для перемещения салазок <a href="/info/186892">фрезерной головки</a> /7—<a href="/info/506011">механизм реверсирования</a> направления подачи /5—<a href="/info/999">зубчатое колесо</a>, передающее <a href="/info/644849">движение механизму подач</a> при <a href="/info/219138">работе методом</a> единичного деления /9—кнопка для включения колеса 18 2(7—эксцентричная втулка, поворотом которой включается или выключается червяк, сцепляющийся с червячным колесом а.

Смотреть страницы где упоминается термин Единичного перемещения метод : [c.103]    [c.42]    [c.76]    [c.469]    [c.273]    [c.422]    [c.273]    [c.476]    [c.551]   
Вариационные методы в теории упругости и пластичности (1987) -- [ c.42 , c.76 , c.77 ]



ПОИСК



Единичные перемещения

Метод перемещений

Метод перемещений и метод сил

Перемещения Определение методом единичной нагрузки

Применение метода единичной нагрузки для определения перемещений

Системы упругие - Определение перемещений по методу единичной силы (метод Максвелла-Мора)



© 2025 Mash-xxl.info Реклама на сайте