Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уравнения равновесия теории упругости (уравнения статики)

Для рассмотрения равновесия произвольной плоской системы сил, статика позволяет составить только три уравнения равновесия, из которых можно определить три неизвестных величины. Если общее число неизвестных равно числу уравнений равновесия, то такая задача является статически определимой. Если же общее число неизвестных больше числа уравнений равновесия, то такая задача является статически неопределимой. Решить ее методами статики нельзя, так как для этого необходимо рассматривать не абсолютно твердые тела, а деформируемые, которые изучают в курсах сопротивления материалов, теории упругости и др. При помощи методов этих наук составляют недостающие уравнения.  [c.50]


Вначале дадим общую сводку основных уравнений для задач равновесия упругого тела, которые составляют содержание раздела теории упругости, называемого обычно статикой упругого тела.  [c.70]

В гл. 4 была рассмотрена в элементарном изложении теория устойчивости упругих стержней. Особенность этих задач состояла в том, что уравнения равновесия составлялись для деформированного состояния стержня, т. е. по существу речь шла о геометрически нелинейных задачах. Вариационные уравнения, описанные в 8.7, эквивалентны геометрически линейным уравнениям теории упругости, для которых доказана теорема единственности. Поэтому никакие задачи устойчивости с помощью этих вариационных уравнений решать нельзя. Здесь мы постараемся распространить вариационные уравнения на геометрически нелинейные задачи. Существо дела состоит в том, что уравнения статики должны составляться не в исходной системе координат, например декартовой, а в той криволинейной системе координат, в которую превращается исходная вследствие деформации. Прямой путь получения таких уравнений довольно сложен, поэтому нам будет удобно вернуться к выводу 7.4, где напряжения определялись по существу как обобщенные силы, для которых компоненты тензора деформации служили обобщенными неремещениями. Пусть тело, ограниченное поверхностью  [c.390]

Выражения (1.14) и представляют собой статико-геометрическую аналогию. Обратим внимание на то, что вектор, стоящий в правой части второго равенства (1.14), является вектором обобщенных перемещений для вектора сил, стоящего в левой части первого равенства (1.14) и наоборот (см. стрелки). Первое уравнение (1.14) является уравнением равновесия, а второе — геометрическим уравнением, связывающим перемещения узлов системы с деформацией стержней, и аналогом уравнений Коши в теории упругости.  [c.17]

Особое внимание уделено получению основных уравнений, соотношений и вариационных формулировок задач статики и термоупругости многослойных оболочек с использованием варианта теории, учитывающего деформации поперечных сдвигов. В качестве кинематических гипотез выступают предположения о несжимаемости стеики оболочки в поперечном направлении и линейном распределении по толщине многослойного пакета касательных перемещений. Распределения касательных поперечных напряжений выбираются в наиболее простом виде независимо от кинематических гипотез. Приведение трехмерной задачи теории упругости к двумерной осуществляется с использованием смешанной вариационной формулировки. Все преобразования выполнены с учетом переменности метрики по толщине оболочки. Показана идентичность полученных уравнений равновесия с интегральными уравнениями трехмерной теории упругости.  [c.66]


Исходные уравнения пространственных задач теории упругости и основные методы их решения сформулированы в ряде учебников и монографий по теории упругости (см., например, [59, 63, 78, 130]). Ниже выводятся лишь некоторые соотношения статики в динамики упругого тела, необходимые в дальнейшем для исследования предельного равновесия квазихрупкого цилиндра, ослабленного внешней кольцевой трещиной.  [c.18]

В работе [61] отмечается дуализм между геометрией теории дефектов и статикой теории упругости. Уравнение равновесия обычной теории упругости при отсутствии объемных сил имеет вид  [c.109]

Для определения реакций в кинематических парах рассматриваемого механизма в дополнение к уравнениям равновесия необходимо записать два независимых уравнения, пользуясь теорией упругости, потому что с точки зрения статики система остается дважды статически неопределимой.  [c.38]

Для доказательства теорем существования решений граничных задач упругого равновесия (статика) мы применили аппарат теории многомерных сингулярных интегральных уравнений и сингулярных потенциалов. При этом, как мы видели, оказалось необходимым значительное расширение схем исследования, применяемых в граничных задачах теории гармонических функций.  [c.279]

Если же речь идет о твердом теле с закрепленной осью, то относительно реакций, возникающих в закрепленных точках оси, основные уравнения равновесия утверждают только то, что их результирующая сила и результирующий момент (относительно данной точки) должны быть равны и прямо противоположны результирующей силе и результирующему моменту активных сил, но не дают возможности определить эти реакции в отдельных закрепленных точках оси. Таким образом, основные уравнения равновесия приводят к заключению, что в статических условиях действие связей можно зайенить какой угодно из систем реакций (эквивалентных между собой), приложенных в закрепленных точках и имеющих результирующую силу и результирующий момент, прямо противоположные результирующей силе и результирующему моменту активных сил. Такое заключение, очевидно, неудовлетворительно, так как с физической точки, зрения бесспорно, что при равновесии реакции всегда определяются однозначно. Мы приходим, таким образом, к новому случаю статической неопределенности, который можно сравнить со случаем, уже встречавшимся в п, 10 гл. IX эта неопределенность происходит от того, что в принципах статики твердого тела не принимаются во внимание деформации, вызываемые силами. Это вполне допустимо в первом приближении, так как деформации вообще бывают незначительными, так что следствия, которые вытекают из этого упрощающего предположения, в достаточной степени соответствуют результатам опыта. Но нельзя претендовать на правильное и детальное отображение всех обстоятельств, связанных с рассматриваемым явлением, если мы намеренно пренебрегаем какими-либо существенными элементами этого явления. Поэтому мы не должны удивляться тому, что относительно реакций Ф мы в состоянии определить лишь свойства, относящиеся к ним в целом (т. е. то, что они имеют результирующую силу и результирующий момент, прямо противоположные результирующей силе и результирующему моменту активных сил F), и не можем указать их распределение в каждой точке. Это достигается в теории упругости, где как раз учитываются указанные выше деформации.  [c.114]

Значительный вклад в теорию оболочек внес А. Л. Гольденвейзер. Им были введены уравнения неразрывности деформаций [34], которые являются аналогом известных уравнений Сен-Венана в общей теории упругости. Тем самым открылась возможность решения задач теории оболочек непосредственно в усилиях и моментах, не прибегая к предварительному определению смещений. При этом обнаружилось примечательное подобие вновь выведенных уравнений неразрывности и более полувека используемых уравнений равновесия оболочки, получившее название статико-геометрической аналогии. Указанная аналогия позволяет тождественно удовлетворить уравнениям равновесия путем введения четырех функций напряжения (что было подмечено почти одновременно А. Л. Гольденвейзером [35] и А. И. Лурье [78]).  [c.8]


Основы теории упругости были разработаны почти одновременно Навье (1821), Коши (1822), Пуассоном (1829). Независимо друг от друга они получили по существу все основные уравнения этой теории. Особо выделялись работы Коши. В отличие от Навье и Пуассона, привлекавших гипотезу молекулярных сил, Коши, опираясь на метод, в котором используется статика твердого тела, ввел понятия деформации и нагфяжения, установил дифференциальные уравнения равновесия, граничные условия, зависимости между деформациями и перемещениями, а также соотношения между напряжениями и деформациями для изотропного тела, первоначально содержавшие две упругие постоянные. В эти же годы появились исследования М. В. Остроградского о распространении волн в упругом теле при возмущении в его малой области. На эти исследования ссылается в своих работах Пуассон, впервые (1830) доказавший существование в однородной изотропной среде двух типов волн (волны расширения и искажения).  [c.5]

Предлагаемая вниманию читателей книга освещает различные методы решения задач механики деформируемого твердого тела. Для иллюстрации возможностей методов выбраны задачи статики, динамики и устойчивости стержневых и пластинчатых систем, т.е. задачи сопротивления материалов, строительной механики и теории упругости, имеющих важное практическое и методологическое значения. Каждая задача механики деформируемого твердого тела содержит в себе три стороны 1. Статическая - рассматривает равновесие тела или конструкпди 2. Геометрическая - рассматривает связь между перемещениями и деформациями точек тела 3. Физическая -описывает связь между деформациями и напряжениями. Объединение этих сторон позволяет составить дифференциальное уравнение задачи. Далее нужно применить методы математики, которые разделяются на аналитические и численные. Большим преимуществом аналитических методов является то, что мы имеем точный и достоверный результат решения задачи. Применение численных методов приводит к получению просто результата и нужно еще доказывать его достоверность и оценивать величину погрепшости. К сожалению, до настоящего времени получено весьма мало точных аналитических решений задач механики деформируемого твердого тела и других наук. Поэтому приходится применять численные методы. Наличие весьма мощной компьютерной техники и развитого программного обеспечения практически обеспечивает решение любой задачи любой науки. В этой связи большую популярность и распространение приобрел универсальный численный метод конечных элементов (МКЭ). Применительно к стержневым системам алгоритм МКЭ в форме метода перемещений представлен во 2, 3 и 4 главах книги. Больпшми возможностями обладает также универсальный численный метод конечных разностей (МКР), который начал развиваться раньше МКЭ. Оба этих метода по праву занимают ведущие места в арсенале исследований. Большой опыт их применения выявил как преимущества, так и очевидные недостатки. Например, МКР обладает недостаточной устойчивостью численных операций, что сказывается на точности результатов при некоторых краевых условиях. МКЭ хуже, чем хотелось бы, решает задачи на определение спектров частот собственных колебаний и критических сил потери устойчивости. Эти и другие недостатки различных методов способствовали созданию и бурному развитию принццпиально нового метода решения дифференциальных уравнений задач механики и других наук. Метод получил название метод граничных элементов (МГЭ). В отличии от МКР, где используется конечно-разностная аппроксимация дифференциальных операторов, в МГЭ основой являются интегральное уравнение задачи и его фундаментальные решения. В отличие от МКЭ, где вся область объекта разбивается на конечные элементы, в МГЭ дискретизации подлежит лишь граница объекта. На границе объекта из системы линейных алгебраических уравнений определяются необходимые параметры, а состояние во  [c.6]

Центральное место в монографии занимает третья глава, в которой на основе единой кинематической гипотезы, позволяющей учесть поперечные сдвиговые деформации, удовлетворить условиям межслоевого контакта и условиям на граничных поверхностях, из принципа возможных перемещений получены нелинейные тензорные уравнения статики упругих анизотропных слоистых оболочек и сформулированы соответствующие им краевые условия. Указаны предельные переходы к уравнениям классической теории оболочек и ортотропной оболочки, предоставляющим возможность учета эффектов сдвига в одном направлении ортотропии (армирования) и неучета — в другом. Приведены упрощенные уравнения, пригодные для расчета пологих оболочек. Линеаризованные уравнения статической устойчивости слоистых оболочек, основанные на концепции Эйлера о разветвлении форм равновесия, сформулированы в параграфе 3.4, а в параграфе 3.5 из принципа виртуальных работ эластокинетики выведены нелинейные уравнения динамики. Здесь же приведены линеаризованные уравнения динамической устойчивости слоистых оболочек и пластин, обсуждены предельные переходы и упрощения, подобные тем, какие были сделаны в задаче статики. Параграф 3.5 посвящен формулировке неклассических уравнений многослойных оболочек в системе координат, связанной с линиями кривизн поверхности приведения. В этой же системе координат составлены уравнения, описывающие осесимметричную деформацию слоистой ортотропной оболочки вращения. В параграфе 3.7 описаны  [c.12]


Постановка краевых задач теории упругости. Пусть упругое тело занимает трехмерную область V, а 5 представляет собой его поверхность. В каждой точке тела V должны выполняться основные уравнения теории упругости соотношение Коши, уравнение движения (уравнение равновесия для задач статики) и уравнение закона Гука ( в случае техмоупругости вместо закона Гука следует брать его обобщение, данное Дюамелем и Нейманом, и модифицированное уравнение теплопроводности (29.14)). Что же касается краевых условий,то основными являются три класса  [c.112]


Смотреть страницы где упоминается термин Уравнения равновесия теории упругости (уравнения статики) : [c.939]    [c.28]    [c.8]    [c.26]   
Теория упругости (1970) -- [ c.23 ]



ПОИСК



Статика

Теории Уравнения

Теория Уравнения равновесия

Теория упругости

Упругость Теория — см Теория упругости

Уравнения Уравнения упругости

Уравнения равновесия в теории упругости

Уравнения равновесия сил

Уравнения равновесия уравнения

Уравнения статики

Уравнения теории упругости

Уравнения упругого КА

Уравнения упругости



© 2025 Mash-xxl.info Реклама на сайте