Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

НЕКОТОРЫЕ МАТЕМАТИЧЕСКИЕ ВОПРОСЫ ТЕОРИИ УПРУГОСТИ

НЕКОТОРЫЕ МАТЕМАТИЧЕСКИЕ ВОПРОСЫ ТЕОРИИ УПРУГОСТИ  [c.8]

Как будет показано в гл. IV, для решения проблемы прочности хрупкого тела нужно уметь находить решение соответствующей математической задачи теории упругости для тела с разрезами нулевой толщины. Эти задачи относятся к так называемым сингулярным краевым задачам, т. е. к граничным задачам с особыми точками. Такими точками являются, например, бесконечно удаленная точка, угловая точка, коническая точка, точка разрыва граничных условии, точка приложения сосредоточенной силы и т. д. Появление таких точек обычно связано с некоторой идеализацией исходной физической задачи. При этом в линейных задачах решение (или его производные, начиная с некоторого порядка) стремится к бесконечности при приближении к особой точке. Поскольку граничная задача в особой точке не определена, встает вопрос о формулировке физически осмысленного дополнительного условия в такой точке, т. е. о постановке корректной сингулярной краевой задачи.  [c.51]


Предлагаемый вниманию читателей краткий курс теории упругости составлен на основе лекций, читанных мною в Московском государственном университете им. М. В. Ломоносова. Эти лекции имеют своею целью сообщить студентам только основные сведения по теории упругости, так как более глубокое изучение отдельных вопросов является задачей специальных курсов, читаемых на последующих семестрах. Поэтому такие вопросы, как теория оболочек, теория пластинок и тонких стержней, теория пластичности и нелинейная теория упругости не затронуты в настоящем курсе совсем, а о плоской задаче и об упругих волнах даны только общие представления. Желающих подробнее ознакомиться с этими вопросами-мы отсылаем к капитальному курсу А. Лява, Математическая теория упругости (перевод с английского, ОНТИ, Москва, 1935), а также к работам Г. В. Колосова, Комплексная переменная и её приложение к плоской задаче теории упругости (ОНТИ, Ленинград, 1936) и академика Н. И. Мусхелишвили, Некоторые основные задачи теории упругости (изд. Ак. Наук СССР, Москва, 1938).  [c.9]

В книге изложены основы механики твердого деформируемого тела, методы и алгоритмы решения соответствующих краевых и начально-краевых задач на ЭВМ и некоторые вопросы математического исследования этих задач и алгоритмов. Основное внимание уделено задачам и методам классической теории упругости.  [c.3]

Как было показано, решение задач теории упругости сводится к некоторым типовым краевым задачам для систем уравнений с частными производными. Фактическое построение решений этих уравнений с заданными начальными и граничными условиями даже при современном уровне развития математических методов и вычислительной техники не всегда оказывается осуществимым. Поэтому представляется целесообразным рассмотреть вопрос о возможности такого изменения краевых условий, чтобы модифицированная задача оказалась более доступной для решения, чем исходная, а различие в результатах было пренебрежимо малым (по крайней мере в значительной части  [c.257]

После этого раздела следуют гл. 8—11, относящиеся к классической теории упругости. После некоторых колебаний автор решил все же включить сюда раздел, относящийся к теории конечных деформаций, область применения этой теории слишком ограничена и имеющиеся решения крайне немногочисленны. Подобранный материал в основном соответствует университетской программе. Преподаватель всегда сможет выбрать отсюда те разделы, которые покажутся ему более интересными. В практике преподавания теории упругости на механико-математическом факультете МГУ автор отказался от изложения теории изгиба Сен-Венана, считая, что вопрос о распределении касательных напряжений при изгибе ие очень важен. Однако появление композитных материалов с полимерной матрицей, которые слабо сопротивляются сдвигу, заставило ввести опять теорию касательных напряжений при изгибе для балок прямоугольного сечения — что нужно для практики. Вообще, применение в технике композитных материалов заставило включить в курс элементы теории упругости анизотропных тел.  [c.13]


Весь цикл научных дисциплин, относящихся к механике деформируемого тела и связанных с разработкой вопросов прочности (жесткости, устойчивости) конструкций, часто называют строительной механикой в широком смысле слова. Строительной механикой (в узком смысле слова) называют статику и динамику сооружений. Границы между отдельными ветвями науки о прочности конструкций определяются как объектами, так и методами исследования, но зачастую эти границы точно указаны быть не могут. Так, прикладная теория упругости занимается в основном расчетом пластин, оболочек и некоторыми сложными задачами расчета брусьев (понятия о брусе, пластинке и оболочке даны в 1.2), привлекая для решения соответствующих задач более сложный математический аппарат, чем сопротивление материалов, но не-  [c.10]

Для построения математической теории упругости необходимо ограничить рассматриваемые функции некоторыми требованиями гладкости. Приведенные выше выводы основных соотношений (уравнения движения, закон Гука и т. д.) справедливы только при соблюдении некоторых условий гладкости рассматриваемых функций. До сих пор на эти функции не накладывались какие-либо ограничения. Рассуждения носили формальный характер или, как иногда говорят, требовалось все, что было нужно для справедливости применяемых выкладок. Цель такого рассмотрения, как отмечалось выше, — выработать некоторые соображения, которые позволят сформулировать аксиоматическую теорию вопроса. Именно этим займемся в настоящем параграфе.  [c.41]

В этой главе исследуются некоторые математические задачи моментной теории упругости доказываются теоремы существования классических решений устанавливается гладкость решений в зависимости от гладкости граничных и начальных данных, массовых сил и массовых моментов, а также от гладкости границы среды даются формулы представления решений в виде интегралов типа потенциала изучаются обобщенные решения, исследуется вопрос о корректности поставленных задач.  [c.346]

Книга по сути дела состоит из двух частей в первых пяти главах излагаются общие основы механики сплошной среды, а в последних четырех — некоторые конкретные ее приложения. За начальной главой, посвященной математическому аппарату, следуют главы, относящиеся к общим вопросам, а именно анализу напряженного состояния, теории деформаций, понятиям движения н течения, а также основным законам механики сплошной среды. Приложения, рассматриваемые в последних четырех главах, относятся к теории упругости, гидромеханике, теории пластичности и теории вязкоупругости, В конце каждой главы приводится набор решенных задач и  [c.7]

О других применениях общих представлений решения. Некоторые обобщения. Изложенные в настоящей и предыдущей (а также следующей) главах методы решения граничных задач плоской теории упругости основаны на общем представлении решения соответствующих дифференциальных уравнений при помощи функций комплексного переменного. Таким общим представлениям решений дифференциальных уравнений в частных производных при помощи произвольных функций придавалось на заре развития математической физики преувеличенное значение, аналогичное тому, которое в свое время придавалось интегрированию обыкновенных дифференциальных уравнений при помощи квадратур. Но вскоре выяснилось, что нахождение общего решения далеко не исчерпывает вопроса и что для решения соответствующих граничных задач такие общие решения зачастую почти ничего не дают.  [c.381]

Постановка вопроса. Из опыта известно, что твердые тела под влиянием внешних сил претерпевают некоторые изменения формы, исчезающие при постепенном прекращении действия сил внезапное же прекращение действия сил вызывает колебательные движения. Задачей математической теории упругости является точный количественный учет возникших таким путем изменений геометрической формы и механического состояния тела. Пред нами стоит, таким образом, вопрос об определении деформаций и напряженного состояния твердого тела, если известны как действующие на него внешние силы так и те условия закрепления, которым оно подчинено. Метод, которым мы руководствуемся, приступая к ре шению этих задач, есть обычный метод математической физики. В первую очередь определяются механические величины, характеризующие физическую картину напряженного состояния материала затем, геометрические величины, определяющие деформацию тела. Зависимость между механическими и геометрическими величинами определяется из опыта их математическая формулировка приводит нас к так называемым основным уравнениям теории упругости, иными словами, к уравнениям с часТными производными, интегрирование которых отвечает в каждом отдельном случае на поставленные выше вопросы. Кроме составления этих основных уравнений, главным содержанием математической теории упругости является еще теория их интегрирования.  [c.5]


В связи с потребностями механики разрушения проблемы теории упругости для тел с математическими разрезами нулевой толщины привлекают к себе пристальное внимание специалистов по прикладной математике. Это интерес выражается прежде всего в огромном числе решений таких задач, полученных различными методами за последние двадцать пять лет . Не ставя здесь себе целью давать более или менее полное изложение этих решений (а число их, наверное, больше числа решений всех контактных задач вместе взятых), остановимся лишь на некоторых наиболее принципиальных вопросах, представляющих интерес также для контактных задач.  [c.261]

Задача Сен-Венана о равновесии упругого призматического стержня под действием произвольной нагрузки, заданной на его торцах, является одной из важнейших задач теории упругости, поскольку ее решение дает возможность оценить точность элементарной теории изгиба, рассматривающейся в сопротивлении материалов, а также позволяет исследовать представляющую значительный практический интерес проблему кручения стержней, которая не может быть решена элементарными приемами. Задача Сен-Венана (в общей ее постановке) является, кроме того, одной из труднейших задач теории упругости. С математической точки зрения она решена далеко не полно. Однако в силу так называемого принципа Сен-Венана имеющееся ее решение, излагаемое ниже, может рассматриваться (хотя и с некоторыми оговорками) как исчерпывающее вопрос.  [c.236]

Остановимся на некоторых характерных чертах теории пластичности. Во-первых, в теории пластичности большое,место (в отличие от теории упругости) занимают вопросы установления законов пластического деформирования при сложном напряженном состоянии. Вопросы эти трудны, и следует заметить, что законы, удовлетворительно согласующиеся (при известных ограничениях) с экспериментальными данными, установлены главным образом для металлов, хотя, вероятно, они сохраняют значение и для многих других материалов. Другой особенностью теории пластичности является нелинейность основных законов, а следовательно, и основных уравнений теории пластичности. Решение этих уравнений представляет большие математические трудности классические методы математической физики здесь непригодны. В теории пластичности важное значение приобретает развитие таких путей исследования, которые, используя специфичность задач теории пластичности, позволяют в той или иной мере преодолеть эти трудности. В этих условиях весьма перспективным также является использование новой вычислительной техники.  [c.10]

Расчеты на прочность изделий сложной формы. Излагая в предыдущей главе теорию сложного напряженного состояния, мы совершенно обошли молчанием вопрос о том, каким образом определить напряженное состояние в телах, подверженных действию сил. Общая задача об определении напряжений и деформаций в упругом теле произвольной формы, подверженном действию произвольных внешних сил, является предметом теории упругости, которая представляет собою раздел механики сплошной среды и развивается в направлении создания и усовершенствования методов решения соответствующих краевых задач для некоторых систем дифференциальных уравнений в частных производных. Несмотря на огромные успехи математической теории упругости, далеко не все задачи, представляющие практический интерес, удается решить во многих случаях, даже когда точное решение или метод его отыскания известны, практическое использование этого решения для расчета на прочность затруднительно ввиду чрезвычайной сложности и громоздкости вычислений. с другой стороны, знания распределения напряжений в теле в упругой стадии его работы еще недостаточно для суждения о прочности. Как мы убедились на примере статически неопределимых стержневых систем, переход некоторых элементов в состояние текучести еще не означает разрушения системы в целом. Тем более это относится к телу, находящемуся в условиях сложного напряженного состояния. Достижение состояния текучести в одной или нескольких точках само по себе не является опасным окруженный упругими областями, материал не имеет фактической возможности течь. В то же время, после того как состояние текучести где-та достигнуто, дальнейшее увеличение нагрузки приводит к образованию пластических зон конечных размеров.  [c.104]

К спорным вопросам методики изложения, принятой в настоящем курсе, мы относим, например, предлагаемый авторами способ вывода общего уравнения энергии на основе первого начала термодинамики ( 4-2). Нам представляется, что традиционный способ использования первого начала термодинамики при выводе уравнения энергии, принятый в лучших отечественных курсах газовой динамики, является более корректным и дает возможность яснее представить сущность делаемых при этом термодинамических допущений. Недостаточно ясна с математической точки зрения трактовка понятий материального метода и метода контрольного объема в 3-6. Оба метода опираются на эйлерово представление о движении жидкой среды. Их противопоставление, как нам кажется, носит иногда искусственный характер. При выводе общих уравнений движения вязкой жидкости — уравнений Навье — Стокса — авторы, видимо, следуя Г. Шлихтингу , опираются на аналогию с напряженным состоянием упругого тела. При этом предполагается знание читателем некоторых вопросов теории упругости. Вряд ли такой способ вывода фундаментальных гидродинамических уравнений будет удобен для любого читателя. Еще одним спорным в методическом отношении местом является то, что изложение теории турбулентного пограничного слоя опережает изложение представлений о турбулентном течении в трубах. Между тем, как известно, теория пограничного слоя использует некоторые зависимости, устанавливаемые при изучении течений в трубах. Поэтому, может быть, естественнее начинать изложение вопроса  [c.7]


Книга содержит нетрадиционное изложение курса теории упругости, базирующегося на специальных разделах теории дифференциальных уравнений в частных производных и математического анализа. В первой главе в достаточно компактной форме дается конспективное изложение тех математических дисциплин, которые уже с успехом используются и могут быть использованы в дальпейи1ем при решении на современном уровне различных задач теории упругости. Две следующие главы посвящены концентрированному, по вместе с тем достаточно полному изложению собственно предмета теории упругости, включая такие сравнительно новые разделы, как. злектромагнитоупругость и механика хрупкого разрушения, постановке краевых задач, а также изложению некоторых приемов сведения краевых задач теории упругости к классическим задачам математической физики, В остальных главах книги (главы VI—VIII) конкретные математические методы, указанные в заглавии, применяются к решению определенных классов задач теории упругости. В ряде случаев эффективность того или иного метода демонстрируется на примерах таких задач, решение которых было получено только в последнее время. Большое внимание уделяется как вопросам строгого математического обоснования тех или иных алгоритмов, так и приемам их численной реализации.  [c.2]

Скорее всего очевидная типографская ошибка или же досадное упущение не позволяет нам узнать из работы самого Корню ) ( ornu [1869, 1]) остальные размеры изгибаемых стеклянных призм, а также выяснить вопрос, является ли полная нагрузка, которая достигала 500 гс, суммой двух концевых нагрузок или максимумом каждой из них. Позднее в различных удобных случаях Сен-Венан выражал удовлетворение экспериментом Корню, рассматривал его как окончательное решение вопроса в пользу атомистической теории Коши — Пуассона ). Все же, несмотря на ограниченность представлений Корню (об ожидаемом значении v.— А. Ф.) и его неудачи в некоторых случаях экспериментально создать условия, предписанные теорией Сен-Венана, введение его экспериментальной техники явилось, несомненно, важной вехой в развитии измерений в механике твердого тела. Именно Корню выпала честь, как он сам утверждал, представить Французской Академии первые результаты по измерению деформаций, полученные с помощью оптической интерференции, и увязать эти результаты с математической теорией упругости.  [c.350]

Предлагаемая книга содержит популярное изложение геометрической теории устойчивости упругих оболочек, основанной на некоторых результатах теории конечных и бесконечно малых изгибаний поверхностей. Наряду с известными результатами, содержащимися в монографии автора Геометрические методы в нелинейной теории упругих оболочек , в книгу вошли результаты исследований, выполненных в последние годы. В частности, здесь содержится полное решенйе задачи об устойчивости сферических оболочек ПОД внешним давлением без каких-либо предположений о характере выпучивания. В рамках принятой математической модели явления дано полное исследование потери устойчивости общей строко выпуклой оболочки, защемленной по краю, под внешним давлением. Рассмотрен вопрос о потере устойчивости цилиндрических оболочек при осевом сжатии и оценено влияние различных факторов на критическую нагрузку. Рассмотрены и другие вопросы. В отличие от упомянутой выше монографии здесь мы ограничиваемся сравнительно небольшим числом классических задач о потере устойчивости оболочек, но исследуем их более полно.  [c.4]

Изложение в 4 вопроса об определении перемещений по тензору деформации представляет в известной мере пересказ в обозначениях тензорного анализа, приспособленный к дальнейшему развитию предмета, 15 книги Н. И. Мусхелишвнли Некоторые основные задачи математической теории упругости (Изд-во Акад. наук, 1949).  [c.69]

Ввиду того, что затронутые в книге вопросы могут, как я надеюсь, представить некоторый интерес для более широкого круга лиц, в частности для лиц, работающих в области технических приложений теории упругости, я старался сделать изложение по возможности доступным и для читателей, знакомых только с основами дифференциального и интегрального исчисления и с элементами теории функций комплексного переменного. Так, например, вопросы, где применяются интегральные уравнения, выделены в отдельные параграфы, которые можно пропустить при чтении без ущерба для понимания остального глава I, в которой изложены основы математической теории упругости в объеме, достаточном для понимания дальнейшего (и даже несколько большем), предназначена для читателей, не специалистов по теории упругости. С целью сделать изложение более доступным, я отказался от применения тензорного исчисления, которым пользовался в своих лекциях в Сейсмологическом институте элементарные сведения о тензорах даны в Добавлении I. Добавления II и III поойящены некоторым элементарным вопросам математики, необходимым для понимания изложенного в книге и обычно недостаточно освещенным в элементарных курсах анализа.  [c.6]

Проделанный выше переход от среднего напряжения по площадке к напряжению в точке связан с воображаемым процессом уменьшения размеров площадки ДР до нуля, необходимым для п )и-менения анализа бесконечно малых. Законность и обоснованность такого формального процесса, как уже указывалось выше, долгое время были под сомнением и являлись предметом дискуссий среди ученых однако приложение полученных основных уравнений теории упругости к решению задач физики довольно быстро показало эффективность разработанных Методов и дало ряд замечательных результатов, подтвержденных опытом это относится прежде всего к области изучения колебаний и распространения волн (например, звуковых) в упругих телах некоторые более простые задачи этого рода освещены в главах IV и IX настоящей книги. Середина XIX века была особенно богата достижениями в смысле развития теории упругости и получения решений задач, важных для физики и техники здесь главную роль сыгралк работы крупнейшего французского исследователя Сен-Венана и его учеников. В этих условиях постепенно исчезли сомнения в физической обоснованности метода теории упругости, оперирующего как бы с непрерывной, сплошной средой с этой точки зрения иногда говорят, что теория упругости основывается на гипотезе сплошного строения твердых тел. При этом, конечно, нельзя забывать, что такая гипотеза является только рабочей гипотезой-, она диктуется принятым математическим методом исследования и не вторгается в те области физики, которые непосредственно занимаются вопросами строения тел.  [c.12]

Изучение поведения упругих тел произвольной формы под действием произвольных сил служит задачей специальной дисциплины, называемой теорией упругости. Иногда употребляют терыян математическая теория упругости, подчеркивая этим та, что, поскольку закон упругости предполагается известным, опредмение напряжений и деформаций является строго поставленной математической задачей интегрирования некоторых систем дифференциальных уравнений. Методы теории упругости, при всей их общности и точности, еще недостаточны для суждения о прочности реальных конструкций. С другой стороны, строгая постановка вопроса об определении напряжений и деформаций методами теории упругости часто приводит к непреодолимым математическим трудностям. Сопротивление материалов тесно связано с теорией упругости и широко использует ее результаты, но нельзя считать, что это упрощенная теория упругости. Пользуясь более простыми математическими методами, сопротивление материалов ставит более широкую задачу, а именно суждение о прочности элементов конструкций с возможно более полным учетом реальных свойств материалов.  [c.26]


Дана строгая математическая формулировка динамических контактных задач с односторонними ограничениями для упругих тел с трещинами. Для этого использованы некоторые понятия и результаты из фукционального анализа и теории вариационных неравенств, которые кратко изложены здесь. Дан краткий обзор литературы математического и прикладного характера по затронутым вопросам.  [c.81]

Математическая теория пластичности, зародившаяся свыше ста лет тому назад в трудах Сен-Венана и Леви, в настоящее время Стала разветвленной наукой, обслуживаюш,ей весьма разнообразные (Области человеческой практики. Из всего обилия работ, посвященных этой дисциплине, отметим лишь некоторые источники [5—121, 14, 17—31], дающие достаточное представление о теоретических а прикладных результатах в этой области. Наиболее сложным и наименее изученным разделом математической теории пластичности является неодномерная упруго-пластическая задача, к которой приво--дят многие вопросы расчета напряжений и деформаций в окрестности разного рода выточек, отверстий, углов, щелей и т. п. Сложность этой задачи состоит в том, что форма и размеры пластической-области т известны заранее и их нужно определить в ходе решения.  [c.5]


Смотреть страницы где упоминается термин НЕКОТОРЫЕ МАТЕМАТИЧЕСКИЕ ВОПРОСЫ ТЕОРИИ УПРУГОСТИ : [c.5]    [c.5]    [c.628]    [c.134]    [c.141]    [c.327]   
Смотреть главы в:

Математические задачи теории сильно неоднородных упругих сред  -> НЕКОТОРЫЕ МАТЕМАТИЧЕСКИЕ ВОПРОСЫ ТЕОРИИ УПРУГОСТИ



ПОИСК



Математические вопросы

Некоторые математические вопросы

Теория вопроса

Теория упругости

Упругость Теория — см Теория упругости



© 2025 Mash-xxl.info Реклама на сайте