Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Покрытия сплавами на основе серебра

ПОКРЫТИЯ СПЛАВАМИ НА ОСНОВЕ СЕРЕБРА  [c.216]

Покрытие благородными металлами. Гальванические покрытия благородными металлами (серебром, золотом, палладием, родием) применяют з приборостроении для защиты контактов от окисления и повышения их износостойкости. Наряду с чистыми металлами применяют покрытия сплавами на основе благородных металлов (золото 4- медь, серебро Н- сурьма .  [c.46]


Покрытия серебром или сплавами на основе серебра наносят на детали из меди и медных сплавов (различные марки латуни, нейзильбер, мельхиор, томпак), коррозионно-стойких сталей, сплавов на никелевой основе и предварительно омедненных сталей.  [c.218]

Таблица 28. Характеристика покрытий на основе серебра и его сплавов с сурьмой Таблица 28. <a href="/info/284010">Характеристика покрытий</a> на <a href="/info/498178">основе серебра</a> и его сплавов с сурьмой
Материалы для пар трения, работающих в условиях высокого вакуума. В условиях вакуума защитные пленки не образуются или их образование весьма затруднено, поэтому узлы трения необходимо смазывать или применять самосмазывающиеся материалы. Применяются и находятся в стадии исследования пары металл — твердый сплав на основе окислов или карбидов, металл — пластик, металл — самосмазывающиеся композиции, металл по металлическому покрытию и металл — алмаз. Тефлон и найлон удовлетворительно работают по закаленной стали, металлокерамике, а также в паре с золотом и серебром. Самосмазывающиеся композиции составляются на основе меди и серебра, другими компонентами являются тефлон и смазывающиеся вещества типа дисульфида молибдена.  [c.204]

В качестве газовых сред для пайки сплавов на основе магния можно использовать аргон марки А, азот с точкой росы —50°С, вакуум 10 — 10 Па и активную газовую среду, состоящую из аргона или азота, активированного парами хлористого аммония 0,1 % (объемные доли). Применение активной среды позволяет паять предварительно покрытые медью, никелем или серебром магниевые сплавы при 150—550 °С. Разработано три способа пайки в этих средах.  [c.269]

Прибор особо удобен при измерении толщины серебра, золота и других покрытий, осажденных на основе медных сплавов.  [c.213]

Серебрение, покрытие сплавом серебро—сурьма, сплавами на основе золота, химическое серебрение  [c.36]

Электроосаждение сплавов на основе палладия. Легирование палладием (3—6 %) серебра, золота и платины повышает твердость и износостойкость покрытий при сохранении почти неизменным переходного сопротивления.  [c.297]


Электролитические сплавы на основе золота, так же как и серебра, находят применение для декоративной отделки изделий и в производстве радиоэлектронной аппаратуры. Легирующими компонентами чаще всего являются никель, кобальт, медь, серебро. Некоторые сведения о влиянии этих добавок на свойства покрытий приведены в табл. 4.2 [68, с. 49]. Благоприятное действие добавок никеля и кобальта проявляется уже при очень малом их содержании. Введение в сплав даже долей процента этих металлов заметно повышает их износостойкость, по сравнению с чистым золотом. Соответственно такие количества легирующего металла вызывают лишь небольшие изменения электрических свойств покрытий. Эти обстоятельства привели к широкому распространению указанных сплавов при изготовлении электрических контактов. Покрытия с несколько большим содержанием никеля или кобальта используют для защитно-декоративной от-  [c.111]

Необходимо отметить, что осадки металлов, имеющих более положительные потенциалы, чем металл основы, следует получать из электролитов, содержащих комплексные соли осаждаемых металлов (например, в случае осаждения меди, серебра, золота на черные металлы и сплавы на основе цинка и алюминия). При осаждении их из электролитов, содержащих простые соли, получаются покрытия, плохо сцепленные с основой. Здесь уместно подчеркнуть, что электроосаждение любых металлов на цинковые и алюминиевые сплавы, независимо от природы применяемых электролитов, сопряжено с необходимостью выполнения специальных подготовительных операций, обеспечивающих удовлетворительную адгезию покрытия к основе.  [c.136]

Пайка алюминия с медью и ее сплавами может быть также осуществлена нанесением защитных покрытий типа цинк, серебро и их сплавов на поверхность меди. При этом используют припои на основе олова, кадмия, циика. Через серебряное покрытие на меди может быть осуществлена кон-  [c.267]

Несмотря на то, что метод пропитки расплавом оказался вполне приемлемым для матриц с низкой температурой плавления, таких, как алюминиевые [20, 21] или серебряные [47], было обнаружено, что указанный метод очень сложен для матриц на основе ни1 8ля и большинства практически важных никелевых сплавов. Трудности возникают вследствие того, что сапфир не обладает способностью спонтанно смачиваться жидким металлом поэтому для обеспечения смачивания и облегчения изготовления композиции необходимо металлическое покрытие. Для пропитки алюминием или серебром поверхность сапфира покрывали более тугоплавкими металлами, т. е. никелем или нихромом [23], улучшающими смачивание покрытия для этих целей наносили распылением. В случае пропитки никелевыми сплавами в качестве покрытий волокон необходимы более тугоплавкие металлы, однако скорость растворения этих металлов сильно ограничивает допустимое время пропитки.  [c.170]

В качестве антифрикционных материалов — неметаллические материалы (графит, дисульфид молибдена), металлы и сплавы, не содержащие свинца (серебро и его сплавы, сплавы никеля и т. д.), композиционные покрытия с включениями неметаллических антифрикционных частиц на основе меди, никеля, железа, серебра и других матриц.  [c.241]

Для повышения твердости, износостойкости и стойкости к потускнению серебряных покрытий в последние годы все шире используют электроосаждение сплавов на его основе. В табл. 5.46 приведены механические и электрические свойства покрытий серебром и его сплавами.  [c.272]

При осаждении покрытий на детали из медных сплавов во избежание контактного выделения на них серебра используют амальгамирование или предварительное серебрение. При амальгамировании следует учитывать, что ртуть из амальгамы, постепенно проникая в металл основы, вызывает в нем коррозию под напряжением, растрескивание, может привести к выходу деталей из строя.  [c.95]

Оксидные или смешанные оксидно-солевые пленки темно-коричневого или черного цвета на серебре получают химической или электрохимической обработкой. В первом случае большое распространение нашли растворы на основе серной печени. Этот препарат получают сплавлением в течение 20—30 мин смеси из двух массовых частей серы и двух частей карбоната калия. Полученный однородный сплав после охлаждения измельчают и растворяют в воде. На 100 частей воды берут 2—3 части серной печени. Обработку серебряных деталей или покрытий ведут в этом растворе в течение 2—3 мин при 60—70 °С. Серная печень легко поглощает влагу и поэтому препарат следует сохранять в закрытой посуде.  [c.268]


Прочное сцепление между основным металлом (сплавом) и серебряным покрытием достигается либо амальгамированием, либо первоначальным нанесением тонкого слоя серебра в ванне с большим содержанием цианида и малым содержанием серебра. Амальгамированию успешно подвергаются сплавы на медной основе, не содержащие значительных количеств никеля. Изделия из железа и никеля совсем не поддаются амальгамированию.  [c.30]

Нечто среднее между диффузионной металлизацией и способом погружения в расплавы представляет собой процесс горячего амальгамирования. Известный еще в глубокой древности, он иногда применяется для нанесения на медь и сплавы на ее основе золота и серебра. Сущность этого метода заключается в следующем. Опилки или порошки драгоценных металлов растворяются в ртути с образованием амальгамы, которая погружением или чаще натиранием наносится на предварительно амальгамированный металл. Затем изделие нагревают до температуры 300—400° С (обязательно под тягой ) до полного испарения ртути. На поверхности металла остается слой серебра или золота, прочно сцепленный с основой благодаря некоторой взаимодиффузии металла покрытия и металла основы.  [c.124]

Высокие антифрикционные свойства могут придаваться нанесением покрытий. В случае нанесения покрытия серебра с двусернистым молибденом на твердую шероховатую основу эффективность покрытия значительно возрастает. Это покрытие в сочетании с электроискровыми покрытиями тугоплавкими металлами и их соединениями рекомендуется для работы в вакууме. Для кратковременной работы при умеренных нагрузках и температурах 500—600° С могут быть рекомендованы термодиффузионные покрытия (азотирование, борирование, алитирование п др.) с последующим нанесением электролитических покрытий (рис. 2). Плазменные покрытия из твердого износостойкого никелевого сплава  [c.47]

Покрытия из мягких антифрикционных металлов используют в качестве твердых смазок при трении скольжения и качения. Сочетание твердой подложки, обладающей высоким сопротивлением нормальным нагрузкам, и мягкой пленки с малым сопротивлением сдвигу лежит в основе механизма действия этих смазок. Важным фактором является толщина слоя покрытия. Слишком тонкая пленка быстро изнашивается, толстая — не обеспечивает необходимого сопротивления нормальным нагрузкам. Характерным является резкое улучшение в присутствии металлических смазок процесса приработки трущихся соединений. Серебро, индий, свинец используют в виде многослойных композиций, наносимых различными способами на поверхность трения. Некоторые многослойные смазочные материалы содержат сульфиды, серебро, свинцово-индиевые сплавы и другие сочетания.  [c.244]

Метод катодного распыления находит широкое применение в технике. Его используют при нанесении специальных покрытий для оптических и электрооптических приборов. Основные области применения метода катодного распыления наиболее полно представлены в статье [194]. В области электроники для контактов и электродов применяют пленки золота, серебра, платины пленки тантала отличаются высокой стабильностью электросопротивления нитрид тантала и некоторые пленки сплавов используют для конденсаторов. Пленки 5102, полученные методом радиочастотного распыления, имеют лучшую стабильность и адгезию, чем полученные любым другим методом. Новым направлением в применении катодного распыления является нанесение твердых смазок (например, МоЗ-з) и износостойких покрытий из хрома, вольфрама, нержавеющей стали и т. п. Например, освоен метод нанесения хромовых и платино-хромовых покрытий на лезвия бритв из нержавеющей стали для увеличения срока их службы. В полностью автоматизированной установке одновременно покрывается 70 ООО лезвий. Катодное распыление применяют для декоративных целей (получения различных орнаментов, рисунков) и для получения тонкого подслоя (хрома, меди и т. п.) на пластмассе с хорошей адгезией к основе. Особенно перспективен этот метод для нанесения покрытий из тугоплавких материалов, которые трудно нанести термическим испарением в вакууме.  [c.8]

Пламенное покрытие 70% 51 — 30% Ag обеспечивает некоторую защиту сплава У+1% Т1+60% ЫЬ. В результате диффузии серебра из покрытия в основу при 1100° С образуется почти сплош-ной богатый серебром слой над силицидным слоем, как это показано на рис. 26 и 27. Покрытие 70% 51+30% Ag при 1100° С обеспечивает защиту сплава У+5% Т1+20% ЫЬ в течение 16 ч, а сплава +1% Т1+60% НЬ— в течение 244 ч.  [c.136]

Палладий [7, 241]—это серебристо-белый металл с равновесным потенциалом, менее положительным, чем у золота и платины, но положительнее, чем у серебра. Стандартный потенциал процесса Pd Pd+++2e равен 4-0.987В. Техническое применение палладия пока довольно ограничено. В виде сплавов с родием, золотом или платиной применяется для изготовления неокисляющихся электрических контактов, термопар, фильер, в качестве нетускнеющих покрытий и др. В сплаве с платиной его используют для контактных сеток при окислении аммиака и лабораторной посуды. В медицине, зубопротезном и ювелирном деле довольно часто применяют сплавы на основе палладия. Во всех случаях, где химическая стойкость палладия достаточна, рекомендуется использовать палладий или его сплавы с платиной, так как палладий является наиболее доступным металлом платиновой гру ппы. Палладий рекомендован как катодная присадка (0,1—0,3%), увеличивающая пассивацию и коррозионную стойкость титана, нержавеющих сталей и других сплавов.  [c.322]

Низкооловянистые сплавы на основе меди применяют в качестве подслоя вместо никеля и меди при защитно-декоративном хромировании как защитные покрытия при работе стальных изделий в холодной и кипящей водопроводной воде для местной защиты стальных деталей при азотировании при покрытии вкладышей подшипников для замены серебра при пайке для декоративной отделки различных изделий (фурнитуры, электроарматуры и т. п.).  [c.182]


Основными свойствами индия, которые определили его применение в гальванотехнике, являются низкий коэффициент трения, высокая стойкость в среде минеральных масел и продуктов их окисления, в атмосферных условиях. К недостаткам его относят низкие твердость и температуру плавления (156,4 °С). Покрытия индием используют в качестве антифрикционного слоя в под-щипниках качения и скольжения, в особенности при смазке минеральными маслами, для повышения отражательной способности рефлекторов, защиты от коррозии в некоторых специальных средах, при изготовлении полупроводников. Значительное применение для тех же целей находят сплавы на основе индия с добавками цинка, кадмия, свинца, никеля, серебра, которые обладают хорошими эксплуатационными свойствами и позволяют уменьшить расход редкого металла.  [c.131]

Во избежание потовых загрязнений работу следует осуществлять в хлопчатобумажных сухих рукавицах. Установлено [278, что коррозионностойкими против потовых загрязнений являются сталь 40X13 (4X13), алюминий и его сплавы, а также хромовые покрытия. Под влиянием потовых загрязнений сильно корродируют углеродистая сталь, серебро, сплавы на основе меди, особенно бронза БрБ2, и никелевые покрытия.  [c.150]

Модификация покровных металлических пленок достигается путем получения электролитических покрытий-сплавов и металлопокрытий с включением в них твердых неметаллических частиц. Так, например, широко используются сплавы на основе меди, цинка, свинца и олова, обладающие новыми функциональными свойствами. Элетролитическое легирование золота и серебра небольшими добавками других металлов приводит к увеличению в несколько раз износостойкости покрытий драгоценными металлами. Включение мелкодисперсных карбидов и йоридов в электролитические осадки аике-  [c.8]

Природа и технология получения цветных покровных пленок, относящихся к первой группе, обусловливает хорошую воспроизводимость их цветовых параметров и высокую, не изменяющуюся во времени светостойкость, что в ряде случаев имеет определяющее значение. Нейтральные белесые и светлосерые цвета имеют металлопокрытия из олова, кадмия, серебра и платины. Теплые сероватые цвета с желтоватым и розовым оттенком соответственно характерны для покрытий никелем и его сплавом с оловом. Холодные с голубоватым отливом, серовато-белесые цвета дают покрытия цинком, хромом и сурьмой. Гамму розовых и золотистых цветов образуют металлопокрытия на основе меди и золота. Желто-золотистые цвета типичны для некоторых сплавов меди с цинком, оловом и алюминием, а также золота с медью и серебром. Черные цвета с различными оттенками могут быть получены при химическом и электрохимическом оксидировании стали, меди, цинка и цветных конструкционных сплавов на основе этих металлов, а также при никелировании и хромировании металлических деталей в некоторых электролитах слол<ного состава [39].  [c.44]

Родий используют для нанесенпя тонких покрытий па серебряные ювелирные изделия, чтобы предотвратить их потускнение и сохранить характерный блеск. Более толстые покрытия родия наносят на столовое серебро, а также на высококачественные отражатели для прожекторов и проекционных фонарей. Палладий применяется для покрытий часовых корпусов, портснгарон и т. д. Представляет интерес применение палладиевого покрытия как основы при нанесении золотого покрытия на серебро, поскольку Палладий препятствует диффузии золота в серсбро. Хотя и утверждают, что палладий можно наносить па любой металл или припой, иа практике предпочитают предварительно наносить на металл основное покрытие из никеля. При нанесении родия на сплавы золота или платину подложка не нужна, по в случае сплавов олова и свинца никелевое покрытие совершенно необходимо, чтобы родиевое покрытие не получилось темным и полосатым. Никелевая подложка повышает стойкость родиевого покрытия к истиранию.  [c.487]

Для испарения алюминия, меди, серебра, хрома и их сплавов испарительные элементы изготавливают преимущественно из тугоплавких бескислородных соединений. На основе этих веществ, обладающих высокой огнеупорностью и широким диапазоном электрофизических свойств, в Институте проблем материаловедения АН УССР разработаны различные материалы с требуемыми характеристиками (табл. 34—36). Применение испарителей из материалов на основе тугоплавких соединений обеспечивает получение качественных покрытий с высокой чистотой конденсата.  [c.125]

Пайка алюминия с медью также затрудена из-за хрупкости эвтектики в паяных швах. Поэтому перед пайкой на медь наносят слой металла, не образующего с алюминием хрупких соединений, например цинка. Пайка алюминия с медью и медными сплавами может быть выполнена припоями на основе олова, кадмия, цинка, с достаточно большими зазорами (1,0 мм), предотвращающими заметное перемешивание паяемых металлов в шве. Как промежуточное покрытие на меди при пайке ее с алюминием пригодны серебро и некоторые серебряные припои. Из серебряных припоев, предназначаемых для этой цели, отмечают два, не содержащих кадмий 65% Ag 20 /о Си 15% 2п и 75% Ag 25% Си [163].  [c.298]

Сравнительно эффективные результаты в основном декоративного характера достигнуты при анодировании магния, цинка, кадмия, серебра, меди и сплавов на их основе. Диэлектрические покрытия, получаемые при aнoдиpoвa ии кремния, титана, ниобия, тантала используются как элементы схем в микроэлектронике.  [c.56]

При пайке титана, так же как и при его обработке, газонасыщенный (альфированный) слой приводит к значительным трудностям в обеспечении растекаемости припоя. Поэтому перед пайкой титана и титановых сплавов рекомендуется слой удалять известными способами, например механическим или травлением в кислотах. Пайку проводят в вакууме в редких случаях - в аргоне повьцаенной чистоты при температуре 800...900 °С. Нагрев до такой температуры при указанном виде защиты от окисления способствует смачиваемости припоя и обеспечению пайки. Выше температуры 900 °С нагревать титан не рекомендуется из-за склонности его к росту зерна и, соответственно, падению пластичности, хотя прочность при этом практически не снижается. В качестве припоев для пайки титана и титановых сплавов находят применение припои на основе никеля или меди, а также серебра. Иногда как основу припоя используют алюминий, образующий с титаном ограниченную область твердых растворов. В ряде случаев на титан наносят барьерные покрытия, например молибден, а затем поверх его никель или медь. Такая композиция покрытий позволяет обеспечить пайку титана с другими металлами без хрупких фаз в паяном шве.  [c.478]

Многочисленные соответствующие электролиты разрабатываются для получения более твердых и блестящих покрытий. Эти электролиты включают кислые, нейтральные и щелочные растворы, растворы, свободные от цианидов. В тех случаях, где требуется максимальная электропроводность, следует получать очень чистые покрытия, и наоборот, для обеспечения специальных физических характеристик следует получать покрытия, сплавленные с различным количеством благородных или других металлов, таких как серебро, медь, никель, кобальт, индий. Твердость таких покрытий может достигать максимального значения около НУ 400 по сравнению с НУ 50 для мягкого золотого покрытия. Коррозионные исследования в промышленной и морской атмосферах, проведенные Бакером [19], показали, что защитные свойства твердого покрытия сопоставимы со свойствами покрытий мягкими металлами и что толщина, составляющая только 0,0025 мм, дает высокие защитные свойства для сплавов на медной основе при выдержке их в течение шести месяцев.  [c.454]


Для низкотемпературной пайки медных проводников, покрытых золотом или серебром, применяют канифольные и стеаринопарафиновые (бескислотные) флюсы для пайки стали, меди, никеля используют пасты на основе вазелина, содержащие 10-15 % хлористого цинка (ЕпС12) или хлористого аммония (N 401) — активированные флюсы для легированных, коррозионно-стойких, жаропрочных сталей и сплавов, а также тугоплавких металлов применяют 25-30 %-ные растворы ЕпС12 в воде (кислотные флюсы), хорошо растворяющие оксидные пленки.  [c.278]

Так, например, для соединения металлической детали со стеклянной вжигание металла в последнюю производится следующим образом стеклянную деталь покрывают суспензией порошка металла или соединений металла, например хлористой платины или окиси серебра, и нагревают с целью получения прочно сцепленной со стеклом пленки металла. После этого ее соединяют с металлической деталью путем обычной пайки оловом или оловянносвинцовым припоем. В качестве флюса применяют водный раствор хлористого цинка. Если спай предназначен для работы при высоких температурах, в качестве припоев применяют серебро, медь или сплавы на их основе. Металлическое покрытие в этом случае должно быть особо прочно связано со стеклом.  [c.214]

При пайке изделий из медных сплавов, конструкция которых позволяет производить пайку под давлением, в качестве припоя можно использовать серебряное покрытие (10—25 мкм) или тонкую серебряную фольгу. При нагреве выше 779 °С медь взаимодействует с серебром с образованием в шве сплава типа припоя ПСр 72. Пайка этим метолом (контактно-реактивным) осуществляется без применения флюса — в вакууме или в и1 ертной среде. Припои на медной основе тугоплавки и вызывают растворение (эрозию) основного металла, поэтому для пайки меди их применяют реже, чем серебряные.  [c.251]

Промышленные титановые и все другие сплавы растрескиваются в бурой дымящейся HNO3, содержащей 20% NO2. При исключении NO2 коррозионное растрескивание наблюдается только для некоторых сплавов, а добавка 2% Н2О устраняет растрескивание полностью [1]. В расплавленных солях, содержащих галоидные соединения, также наблюдается коррозионное растрескивание [36]. Смеси хлоридов и бромидов при 350° С вызывают как межкристаллитное, так и транскрнсталлитное растрескивание с максимально высокими скоростями (7 мм/с). Растрескивание в сильной степени зависит как от температуры, так и от количества присутствующих галоидных соединений. Как установлено, в ряде жидких металлов происходит охрупчивание некоторых титановых сплавов. Например, в ртути сплав Ti—8А1—1Мо—IV подвержен межкристаллитному и транскристаллитному разрушению [36] с высокими скоростями (10 см/с). Термическая обработка оказывает аналогичное влияние на коррозионное поведение титановых сплавов, как в водных, так и метанольных растворах. Некоторые сплавы ох-рупчиваются в расплавленном кадмии и цинке. Весьма интересно охрупчивание металла— основы, обнаруженное на деталях из титанового сплава, покрытого кадмием, серебром и цинком [37, 38]. Сообщается о разрушении в процессе эксплуатации крепежных деталей (винты, болты, гайки) из сплава Ti—6А1—4V, гальванически покрытых кадмием [35]. Растрескивание этого сплава и сплава Ti—8А1—1Мо—IV воспроизведено в лабораторных испытаниях на образцах с гальваническим покрытием в области температур 38—316° С [38]. Механизм этого разрушения не установлен, однако кадмий обнаружили на поверхности излома. По-видимому, процесс растрескивания подобен разрушению за счет охрупчивания, происходящего в жидком металле. Как полагают, в данном случае водород не  [c.277]


Смотреть страницы где упоминается термин Покрытия сплавами на основе серебра : [c.233]    [c.92]    [c.235]    [c.234]    [c.465]    [c.184]    [c.636]    [c.487]    [c.384]   
Смотреть главы в:

Гальванические покрытия в машиностроении Т 1  -> Покрытия сплавами на основе серебра



ПОИСК



КЭП яа основе серебра

Покрытие сплавами

Покрытия сплавами серебра

Серебрение — Покрытия сплавами основе серебра 1.216, 217— Свойства

Серебро

Серебро и сплавы

Серебро и сплавы серебра

Серебро покрытия

Сплавы на основе



© 2025 Mash-xxl.info Реклама на сайте