Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Проблема однородности

В заключение скажем несколько слов относительно получения магнитных полей в несколько тысяч эрстед, обычно применяемых при исследовании ядерного магнетизма. Двумя основными требованиями, предъявляемыми к магнитам, создающим эти поля, являются однородность поля в пространстве и его стабильность во времени. Мы не будем обсуждать технические проблемы, связанные с этими требованиями, а отметим только два замечательных устройства, которые были использованы с целью преодоления этих трудностей. Первым является устройство с вращающимся образцом оно предназначено для решения проблемы однородности поля. Предположим, что неоднородность поля АЯ в пределах образца меньше, чем 1 10 эрстед, так что ларморовские частоты любых двух ядер отличаются не более чем на Av = у/2я 10 гц (4 гц для протонов). Макроскопическое движение (вращение) всего образца с частотой, гораздо большей чем Av, заставит каждый ядерный спин чувствовать все значения внешнего поля в пределах интервала АЯ, что приводит к заметному сужению резонансной линии, поскольку эффективное поле для каждого протона будет средним из всех значений поля, которые он проходит во время движения. На фиг. 20 показаны два сигнала, полученные от вращающегося и неподвижного образцов.  [c.97]


Интенсивное изучение методов и техники точной реализации точек плавления и затвердевания металлов было проведено авторами работ [47—50] и [52—56]. Предел воспроизводимости, достигнутый при реализации точек затвердевания металлов, определяется скорее совершенством термометров, используемых для фиксации переходов, чем самими металлами. Необходимость обеспечить достаточную глубину погружения термометра в среду с измеряемой температурой является сложной проблемой (см. гл. 5). В зависимости от конструкции термометра требуется его погружение в зону однородных температур в пределах от 10 до 20 см, чтобы чувствительный элемент в пределах 0,5 мК соответствовал температуре окружения. Поскольку разница АТ между температурой чувствительного элемента и температурой окружения экспоненциально уменьшается с глубиной погружения, нет больших различий в глубине погружения для точки таяния льда, точки затвердевания олова и даже золота. Увеличение глубины погружения для разных конструкций термометров на 1,5—3 см приводит к уменьшению АТ примерно в 10 раз. В точках затвердевания металлов обычно можно обеспечить достаточную глубину погружения, однако при измерении платиновым термометром сопротивления температур других объектов всегда важным ограничением является однородность их температур. Поэтому выше 500 °С платиновым термометром трудно измерить температуру тела с точностью лучше 50 мК. Отметим в этой связи эффективность применения тепловых трубок для увеличения области очень однородной температуры.  [c.169]

Однако эти вопросы в данный момент интересуют нас в меньшей степени, чем сформулированная выше проблема о распространении энергии электромагнитной волны. Поэтому ограничим размеры поля так, чтобы в исследуемой области левая часть ра- венства (1.25) обращалась в нуль. Это выполняется, в частности, в случае однородной непроводящей среды (j = 0). Тогда  [c.40]

Такой световод напоминает (см. 1.2) волновод, широко используемый в технике СВЧ. Этот способ транспортировки светового потока применяется в волоконной оптике для передачи информации модулированным световым сигналом. Однако при этом возникли существенные трудности и лишь в последние годы были решены проблемы, основанные на использовании весьма чистых и однородных волокон. Дело в том, что наличие в стеклянном волокне мельчайших пузырьков воздуха, трещин, пылинок и т.д. приводит к рассеянию световых волн и резкому возрастанию потерь энергии, нацело исключающих возможность применения системы таких волокон для целей оптической дальней связи. В результате интенсивной исследовательской работы в 70-е годы была разработана технология получения оптических волокон очень высокого качества. Потери энергии в таких световодах оказываются того же порядка, что и затухание электрического импульса, распространяющегося в металлическом проводнике. Можно ожидать, что несомненная выгода передачи информации на оптических частотах будет реализована не только в условиях космоса, где не играют роли помехи, неизбежно возникающие при распространении свободной световой волны в приземной атмосфере.  [c.93]


Гипотеза о существовании st-кванта позволяет предложить новую интерпретацию начального этапа эволюции Вселенной. Можно представить, что рождающаяся при А/ - О Вселенная представляет собой сферу большого радиуса, однородно заполненную раскаленным первичным веществом и эволюционирующую дальше по известной схеме. При таком подходе начальная фаза раздувания Вселенной (см. с. 229) может отсутствовать, а проблема горизонта событий находит естественное объяснение (см. с 228).  [c.219]

В отношении равномерности распределения температуры и однородности химического состава ванны, а также угара металла канальные печи не уступают тигельным, а по значениям КПД и коэффициента мощности значительно их превосходят, причем эти показатели не зависят от степени заполнения печи металлом. Увеличение емкости является более простой проблемой для канальных печей, чем для тигельных, поскольку энергетические задачи решаются простым наращиванием числа индукционных единиц. Условия работы подовых камней канальных печей значительно тяжелее, чем футеровки тигельных печей, с повышением температуры металла в каналах срок службы подовых камней прогрессивно сокращается. Наконец, для канальных печей характерен полунепрерывный или непрерывный режим работы.  [c.269]

Итак, пока в известной нам части Вселенной материальный мир эволюционирует от более упорядоченных состояний к менее упорядоченным, от неоднородного к однородному, от концентрированной энергии к рассеянной, от малых значений энтропии ко все большим. Но в далеком прошлом и у нас должны были протекать обратные процессы, иначе не накопились бы предметные и энергетические ресурсы на Земле и в Солнечной системе. Так, может быть, наступит время, когда эти процессы вновь потекут естественно Или будет открыта возможность проводить их искусственно Ведь и сейчас в процессе естественного фотосинтеза, благодаря которому существует жизнь на Земле, хотя и медленно, но происходит концентрация энергии и уменьшение энтропии. Этот процесс доставляет человечеству ежегодно 80 миллиардов тонн органических веществ, что в 10 раз превосходит все добываемое за это же время органическое топливо (уголь, нефть, газ). Не удивительно поэтому, что нобелевский лауреат-атомщик Фредерик Жолио-Кюри считал, что не столько атомная энергия, сколько массовый синтез молекул, аналогичных хлорофиллу, произведет подлинный переворот в энергетике мира . Искусственный фотосинтез — величайшая научная проблема.  [c.190]

Конечная плоская деформация, наложенная на однородное растяжение, перпендикулярное плоскости деформации, исследуется в разд. IV. Данная проблема является совсем не тривиальным обобщением задачи об обычной плоской деформации вследствие некоторых трудностей, возникающих при определении состояния так называемого однородного растяжения растяжение в осевом направлении влечет за собой скручивание волокон в плоскостях поперечных сечений.  [c.290]

Усталость — это полная потеря свойств (или разрушение) элемента конструкции, наступившая после действия на него переменной нагрузки, максимальная амплитуда которой по величине меньше статической, монотонно прикладываемой нагрузки, вызывающей разрушение этого элемента. Процесс разрушения и усталости металлов зависит от состава, особенностей металлургического процесса, геометрии образца (элемента конструкции), вида нагрузки, времени и условий внешней среды. Для композитов число влияющих параметров необходимо увеличить по крайней мере вдвое из-за наличия в материале двух фаз. Более того, необходимо также учесть и влияние поверхности раздела, что приведет к еще большему усложнению задачи. Конечно, ни одна приемлемая модель для предсказания процесса разрушения не мол<ет одновременно включить все вышеупомянутые параметры. Действительно, невозможно себе представить систему черного ящика , у которого на входе — весь комплекс переменных параметров, а на выходе — только скорость роста разрушения и время достижения предельного состояния. Поэтому не существует единого подхода для определения усталостного разрушения для металлов (которые по крайней мере при макроскопическом подходе рассматриваются как однородные). Для композитов проблема тем более усложняется вследствие присущей им неоднородности. Усталости композитов посвящены многочисленные работы. Достижения и современные тенденции в этой области обобщены в работах [49, 50].  [c.84]


Проблема рассеяния касается отклонения частиц под действием центральной силы. Мы рассмотрим однородный пучок частиц, например, электронов или а-частиц, обладающих одинаковой массой и одинаковым законом изменения энергии V в зависимости от расстояния г до центра силы. Силу эту мы будем предполагать стремящейся к нулю при г- со. Поток частиц мы будем характеризовать его интенсивностью / (эту величину называют также плотностью потока), которая равна числу частиц, проходящих через единичное поперечное сечение потока в единицу времени. По мере приближения частицы к центру силы она будет притягиваться им либо отталкиваться, и траектория ее будет отклоняться от начальной прямой линии. Затем частица станет удаляться от этого центра, и действующая на нее сила в конце концов уменьшится настолько, что траекторию можно будет опять считать прямолинейной. В общем случае конечное направление ее движения не будет совпадать с начальным, т. е. будет иметь место некоторое отклонение. Поперечным сечением рассеяния в данном направлении мы будем называть величину а(й), определяемую равенством  [c.97]

Листы, плакированные слоем коррозионно-стойкой стали, все чаще используют вместо толстых коррозионно-стойких листов, производство которых связано с проблемами гомогенности стали с точки зрения структуры и химической однородности материала. В толстых листах труднее удержать углерод в твердом растворе из-за сниженной скорости охлаждения. Плакированный лист, наоборот, сочетает преимущества коррозионно-стойкой стали с прочностью и вязкостью основной конструкционной стали. Плакирование прокаткой или взрывом позволило соединять материалы с различными свойствами, обеспечивая хорошее взаимное сцепление отдельных слоев материалов. Толщина плакированных листов 8—40 мм. Повая прогрессивная технология сварки давлением путем прокатки пакета катаных заготовок и горячей прокатки симметрично сложенной заготовки позволяет получать два односторонне плакированных листа, причем плакированные слои отделены друг от друга изолирующим слоем. Эта технология оказала благоприятное влияние — не только качественное, но и размерное — на сортамент. Плакирующими металлами являются коррозионно-стойкие стали, медь, латунь, монель, титан и т. д. В последнее время применяют также футеровку аппаратов, резервуаров и т. д. различными материалами. Речь идет о так называемом машиностроительном плакировании, когда в емкость помещают вставку в виде листа из коррозионно-стойкой стали.  [c.82]

Феноменологический и физический пути построения критериев. Описанный выше подход к построению критерия для оценки границы перехода материала в предельное состояние имеет чисто феноменологический характер, никак не связанный с дискретностью строения материи поэтому и сами критерии имеют чисто феноменологический характер. В отличие от феноменологического, мыслим и физический подход к решению проблемы. Однако даже в случае линейного напряженного состояния или чистого сдвига теоретически находить характеристики, определяющие переход материала в предельное состояние, удается лишь для монокристаллов идеальной структуры. В случае же наличия многообразных дефектов структуры монокристалла, а тем более в случае поликристаллического тела (металла), проблема до сих пор не разрешена надежно даже для отмеченных выше элементарных однородных напряженных состояний. В настоящее время предпринимаются многочисленные попытки в направлении построения физических теорий с использованием методов математической статистики и теории вероятностей, к сожалению, пока далекие от возможности непосредственного широкого их использования в практических расчетах. Больше других удалось исследовать вопросы хрупкого разрушения, в том числе рассмотреть масштабный фактор и изменчивость прочности, а также явление усталости. Однако будущее принадлежит именно статистическим теориям, описывающим физику явления с единых позиций.  [c.539]

Камнем преткновения в развитии теории предельной полезности является проблема нахождения единицы для ее измерения. Непосредственная количественная оценка полезности на базе субъективных ощущений даже однородных материальных благ весьма сомнительна, не говоря уже о материальных благах, удовлетворяющих различные потребности. Правда, человек может сказать, что он получает больше удовольствия от телевизора, чем от радиолы, но конкретно во сколько раз больше это удовольствие сказать не может. Для этого нужно установить соответствующие единицы измерения. Практически это невозможно. Трудно даже представить единицу наслаждения или страдания.  [c.87]

Однако проблема значительно сложнее при мелкосерийном производстве, так как в этом случае нет статистически обоснованного объема выборки для очень малых партий. Такое положение является обычным для ракет на твердом топливе, баллистических ракет дальнего действия и для космических объектов, когда производственная продукция за год может составлять от десятка до сотни единиц. Объем выборки при этом может изменяться от 1 1 до 1 10 точное его значение определяется в зависимости от 1) допустимой степени риска 2) вероятности однородности последующих единиц изделий 3) потенциального влияния отказов изделия 4) производственной возможности изготовлять достаточное количество изделий как для сдачи заказчику, так и для испытаний за определенное время 5) стоимости изделий и испытаний.  [c.182]

Мерой оценки свариваемости служит комплекс показателей по химической однородности, по стойкости против межкристаллитной коррозии, твердости, пределу текучести и прочности, показателям пластичности, ударной вязкости, чувствительности к надрезам и т. д. Особо важное место занимают проблемы свариваемости с позиций технологической прочности, т. е. сопротивления металла образованию трещин при сварке, в процессе остывания и в последующий период.  [c.129]


Проблема расчёта собств. значений и собств. ф-ций сводится к решению системы однородных относительно компонент Ф ур-ний  [c.412]

Следует отметить, что известен ряд решений ио проблеме взаимного влияния трещин, например, аналитическое решение задачи для бесконечной упругой плоскости, ослабленной двоякопериодической системой разрезов, на берегах которых задана нормальная нагрузка [82], и решение задачи о системе трех трещин, расположенных вдоль одной оси [82], или о бесконечной цепочке равноотстоящих трещин при однородном растяжении на бесконечности [118].  [c.123]

Как видно из (4.35), высокие удельные параметры Аг-лазера возможны лишь при высоких плотностях токов, т. е. при использовании дуговых разрядов. Это обстоятельство сказывается на конструкции ионных лазеров. Для обеспечения однородного сильноточного разряда разрядную трубку приходится делать в виде достаточного тонкого капилляра. Иногда для достижения максимальной концентрации заряженных частиц разрядный капилляр помещают в продольное магнитное поле. Ряд проблем возникает в Аг-лазерах из-за эффекта переноса ионов Аг" " от анода к катоду. В результате этого вдоль разрядной трубки образуются большие градиенты давления и для ликвидации их приэлектродные области разряда приходится соединять длинной обводной трубкой, по которой газ возвращается обратно в прианодную зону. Однако основная проблема создания мощных Аг-лазеров заключается в преодолении высоких тепловых нагрузок. Для получения излучения мощностью 10 Вт необходимо подвести к трубке 10 кВт электрической энергии. Температура ионов в разряде составляет при этом 3000 К. Это приводит к серьезному усложнению конструкции и сокращению ресурсных характеристик ионных лазеров.  [c.161]

В интервале в МПТШ-68 определяется термопарой из платины и сплава 10 % родия с платиной, градуированной при 630,74 °С, а также в точках затвердевания серебра и золота с использованием квадратичной интерполяционной формулы. Разработаны требования к величинам термо-э. д. с. термопары в реперных точках, которым этот прибор должен удовлетворять при воспроизведении шкалы. В гл. 6 будет показано, однако, что эти требования часто неоправданно строги. Было найдено, что если один из электродов термопары изготовлен из чистой платины, а другой содержит родий в пределах от 10 до 13%, то шкала воспроизводится удовлетворительно. Главная проблема при использовании термопар состоит в их недостаточной воспроизводимости. Причины этого рассматриваются в гл. 6 и хотя они понятны, их воспроизводимость очень трудно улучшить. Проблема в том, что измеряемая термо-э. д. с. возникшая вследствие разности температур спаев термопары, зависит не только от этой разности температур, но и от однородности проволоки электродов термопары. Если электроды не вполне однородны, то измеренная термо-э. д. с. начинает зависеть от конкретного распределения температуры вдоль проволок от горячего до холодного спаев. Найдено, что по этой причине для термопар из Р1 —10% НМ/Р в интервале 630—1064 °С достижимая точность не превышает 0,2 °С. Современные требования к точности измере-  [c.55]

Ионно-плазменная модификация поверхностных слоев сопровождается образованием тонких покрытий с особой структурой, которое происходит в неравновесных условиях. При взаимодействии ионных потоков на фанице подложки с гюкрытием происходят сложные физикохимические процессы, такие, как диффузия компонентов покрытия в материал основы, эпитаксиальный рост кристаллитов на подложке, текстурирование микрообъемов гюкрытия, образование хрупких соединений в области границы раздела. Вследствие протекания плазмохимических процессов при взаимодействии элементов покрытия с матрицей, а также с атомами рабочего газа возможно образование неравновесных структур, новых химических соединений и фаз нестехиометри-ческого состава. Проблемы получения качественных покрытий связаны с формированием однородных стехиометрических поверхностных слоев требуемого состава с высокой адгезией к материалу основы. Достиже-  [c.181]

В теории механических колебаний балок из композиционных материалов, а также других конструкций можно выделить два основных направления (они обсуждаются в работах [34, 1 ]) метод эффективных модулей и метод эффективных жесткостей. Согласно первому методу композиционный материал в задачах динамики рассматривается как однородный и ортотроппый (свойства такого условного материала соответствуют исходному материалу), а согласно второму — по упругим постоянным волокон и связующего и геометрическим параметрам находят эффективные жесткости . Эти методы приводят к различным уравнениям движения. и граничным условиям. Значение метода эффективных жесткостей заключается в возможности описывать волновую дисперсию, кроме того, он более эффективен в задачах о распространении волн. Проблема распространения волн в композиционных материалах здесь не обсуждается. Отметим только, что она рассмотрена в работах [40, 6, 16, 82]. В задачах динамики конструкций из композиционных материалов метод эффективных жесткостей получил более широкое распространение. Для балок из слоистых композиционных материалов наиболее эффективна разновидность метода, которая изложена в работе [77] и описана ниже..  [c.138]

Формовочные массы обычно используются в том случае, когда упрочнитель вводится в виде рубленых волокон, но не накладываются ограничения на распределение упрочняющих стекловолокон. При формовании стараются получить более однородное распределение волокон в листе. Однако иногда возникают трудности, связанные с тем, что время, в течение которого должна завершиться полимеризация формовочной массы и она должна быть уложена на фанерную сердцевину, оказывается недостаточным, что приводит к нарушению связи между сердцевиной и покрытием. Возможный путь решения этой проблемы заключается в соответствующем выборе состава смолы, позволяющем увеличить время полимеризации и избеяшть указанных трудностей.  [c.217]

Рассмотрено последовательное развитие методов и моделей для анализа разрушения армированных волокнами материалов методами микромеханики. В основе предложенного инженерного решения проблемы лежит учет неоднородности композита, поскольку замена композита однородным анизотропным материалом не соответствует сущности происходящих явлений усталости и разрушения. В то же время не рассматривались такие тонкости явления, как механика ми-кроразрушения. В результате оказалось возможным сформулировать упрощенную модель, объединяющую реальные свойства материала с разумными инженерными допущениями. -  [c.100]

Проблема малоцикловой прочности конструктивных элементов при неизотермическом нагружении связана с изучением сопротивления циклическому упругопластическому деформированию и разрушению материалов при однородном напряженном состоянии, с экспериментальным и расчетным исследованием полей напряжений и деформаций в зонах возмоншого разрушения, с разработкой критериев разрушения при однородном и неоднородном напряженном состояниях в условиях различных сочетаний циклов теплового и механического нагружений, а также с разработкой инженерных и нормативных методов расчета элементов конструкций на малоцикловую прочность [1—5].  [c.36]

Понятно, что тщательный анализ экспериментов должен подтвердить подобные утверждения, если только на экспериментальные данные действительно влияет, как мы это считаем, указанная структура движения. Из приведенных нами утверждений следует невозможность последовательного истолкования понятий положение электрона и траектория электрона если все же попытаться сохранить эти понятия, то они неизбежно окажутся противоречивыми. Это противоречие настолько резко, что возникает сомнение, может ли вообще быть понята сущность движения в атоме с помощью пространственно-временной формы мышления. С философской точки зрения, я считаю решение вопроса в подобном духе равносильным полному поражению, так как мы в действительности не можем изменить своих методов мышления и все, что не познаваемо с помощью этих методов, не может быть понято вообще. Подобные случаи, возможно, существуют, но я не верю в то, что к ним относится и проблема структуры атома. С нашей точки зрения, нет никаких оснований для подобных сомнений, хотя, или лучше сказать потому, что их причина вполне понятна. Подобным образом мог бы также потерпеть крушение сторонник геометрической оптики, подходя в своих опытах к явлениям дифракции и используя понятие луча, оправданное макроскопической оптикой этот оптик мог бы в конце концов тоже прийти к мысли, что законы геометрии неприменимы к явлениям дифракции, поскольку считаемые им прямыми и независимыми друг от друга световые лучи при этих явлениях каждый раз замечательным образом закручиваются в однородной среде и заметно влияют друг на друга. Я считаю, что здесь имеет место очень тесная аналогия. Даже для необъяснимых закручиваний в атоме эта аналогия сохраняет силу — вспомним о внемеханическом принуждении , придуманном для объяснения аномального эффекта Зеемана.  [c.691]


Кроме того, при прямом классическом подходе возникает проблема моделирования демпфирования. Если конструкция изготовлена из однородного материала, то одно из решений заключается в замене в уравнении (1.1) модуля Юнга Е на комплексный модуль Е -fill) [1-11—1-13] (см. гл. 2), но это даег необходимый результат лишь для материалов, обладающих линейными характеристиками демпфирования, которые могут зависеть или не зависеть от частоты колебаний. Если демпфирование вводится в точке, опоре, подшипнике или каким-либо-иным конструктивным решением, то необходимо вводить демпфирующие силы и (или) моменты, значения которых определяются экспериментально или аналитическими методами. Эта  [c.21]

В общем случае нестационарное течение однородной среды в пучках витых труб может быть описано математически дифференциальными уравнениями сплошной среды [39]. В данной работе рассматривается турбулентное течение. Дифференциальные уравнения, описывающие это течение, выводятся из системы уравнений Навье—Стокса, неразравности и энергии, используя правила усреднения во времени в фиксированной точке пространства. Действие пу тьсационного движения на усредненное движение проявляется при этом увеличением в усредненном движении сопротивления возникновению деформации, и возникает проблема замыкания системы дифференциальных уравнений, поскольку в них появляются коррелированные средние значения произведений пульсапионных величин йДГ Ф о, ЧY Ф о и т.д.  [c.12]

Пути решения проблемы. В проблеме получения больших автоэмиссионных токов, а, следовательно, и использования автокатодов с большой рабочей площадью, решающую роль играет геометрическая неоднородность микровыступов по рабочей поверхности катода. С помощью интегральной технологии удается достичь достаточной равномерности радиусов закруглений эмиттирующих центров, см. например [220, 221]. Однако неизбежно присутствующие при автоэмиссии адсорбция остаточных газов и ионная бомбардировка приводят к неодинаковому изменению радиусов закругления микровыступов или, если следовать терминологии уравнения Фаулера—Нордгейма, форм-фактора. Это приводит к перегрузке отдельных микровыступов, их взрывному испарению, разряду между катодом и анодом, и, как следствие, к деградации катода. В случае автокатодов из углеродных материалов геометрическую однородность эмиттирующих микровыступов создать практически невозможно. Поэтому основным инструментом, выравнивающим эмиссионные характеристики поверхности автокатода, является формовка, о чем уже неоднократно упоминалось. Однако, как показано выше, простая формовка для автокатодов большой площади не приносит желаемых результатов. Это связано, по-видимому, не только с большой неравномерностью микро-, но и макроповерхности катода, а также с изменениями расстояния анод—катод, которые при их малой величине играют очень большую роль. Один из наиболее перспективных на сегодняшний день путей решения этой проблемы состоит в разделении катода на электрически изолированные фрагменты, индивидуальной формовке каждого фрагмента и сдвиге вольт-амперных характеристик фрагментов в заданный допуск (естественно, в более высоковольтной области) [214]. Такие операции осуществляются с помощью вычислительно-управляющих комплексов на базе ЭВМ путем снятия вольт-амперных характеристик до токов, бйльших первоначального значения для формовки, после чего производится повторная формовка автокатода. После ее окончания вольт-амперная характеристика в области больших токов практически не изменяется (в координатах Фаулера—Нордгейма), а в области минимальных токов — сдвигается до попадания в требуемый допуск. При параллельном включении обработанных таким образом автокатодов наблюдалось полное сложение токов в полученной многоэмиттерной системе, т. е. в пределах флуктуаций общий ток равен сумме токов эмиссии каждого из катодов [222]. На основании указанных операций получен [214 ( автоэмиссионный ток 100 мА в непрерывном режиме с 9 автоэлектронных катодов из пучков углеродных волокон диаметром 70 мкм. Расстояние анод—катод 1,5 мм, давление остаточных газов 5 -10 Па. Предельный ток до формовки системы из 9 катодов не превышал 2 мА. В результате индивидуальной формовки каждый из катодов обеспечивал эмиссионный ток на уровне 10—15 мА. Вольт-амперные характеристики всех  [c.157]

В. р. используется в ионных источниках для создания плазмы, в качестве источника света в спектроскопии, в мощных молекулярных лазера.х для создання однородной активной среды (см. Газовый лазер), в плаз-мохимии для изучения хим. реакций в газах, в экснери-монтах по проблеме управляемого термоядериого синтеза для первичного пробоя газа,  [c.372]

Совр. этап в развитии К, характеризуется интенсивным исслелованием проблемы начала космологич. расширения, когда плотности материи и энергии частиц были огромными. Руководящими идеями здесь являются новые теоретич. открытия в физике взаимодействия элементарных частиц при очень больших энергиях (см. Великое объединение). Др. важная проблема К,— объяснение возникновения крупномасштабной структуры Вселенной — скоплений галактик, самих галактик и т. д. из первоначально почти однородного расширяющегося вещества.  [c.476]

Исторически первой проблемой, связанной с Ф. к, и., была проблема яркости ночною неба в видимом диапазоне. В связи с ней был сформулирован простейший кос-мологич, теет, вошедший в историю науки под назв. парадокс Ольберса , и ги фотометрический парадокс, в бесконечной однородной стационарной Вселенной на любом луче зрения мы должны видеть поверхность звезды, т, е. всё небо должно иметь яркость, сравнимую с яркостью диска Солнца. Очевидно, что такая модель Вселенной находится в противоречии с нашим повседневным опытом—яркость ночного неба в видимом диапазоне весьма низка. Парадокс Ольберса разрешён в совр. эволюционных моделях Вселенной, Галактики родились ок. 10 млрд. лет назад, плотность числа звёзд во Вселенной столь мала, что на космологич. горизонте ( -f 10 см) доля неба, покрываемая звёздами, ничтожно мала. Кроме того, излучение звёзд на больших расстояниях из-за красного смещения сдвигается в ИК-диапазон и не даёт вклада в наблюдаемую яркость неба в видимом диапазоне.  [c.335]

Указанные процессы протекают с достаточной интенсивностью уже при давлениях порядка атмосферного, поэтому проблема введения энергии в активную среду таких лазеров оказывается технически значительно менее сложной, чем в случае лазеров на димерах инертных газов. Активная среда Э. л. на моногалогенидах инертных газов состоит из одного или неск. инертных газов при давлении порядка атмосферного и нек-рого кол-ва ( 10 атм) галогеносодержащих молекул. Для возбуждения лазера применяется либо пучок быстрых электронов, либо импульсный электрич. разряд. При использовании пучка быстрых электронов выходная энергия лазерного излучения достигает значений Ю" Дж при кпд на уровне неск. процентов и частоте повторения импульсов значительно ниже 1 Гц. В случае использования электрич. разряда выходная энергия лазерного излучения в импульсе не превышает долей Дж, что связано с трудностью формирования однородного по объёму разряда в значит, объёме при атм. давлении за время 10 НС. Однако при применении электрич. разряда достигается высокая частота повторения импульсов до неск. кГц), что открывает возможности широкого практнч. использования лазеров данного типа. Наиб, широкое распространение среди Э. л. получил лазер на ХеС1, что связано с относительной простотой реализации работы в режиме высокой частоты повторения импульсов. Ср. выходная мощность этого лазера достигает уровня 1 кВт.  [c.501]

Физ. проблема совр. Э. заключается в уточнении связи параметров поляризации со свойствами среды. Формулы Френеля получены из граничных условий на геом. плоскости, разделяющей однородные сплошные среды, и поэтому являются первым приближением. Микроскопич. расчёты показывают, что отражённая волна формируется в неск. приповерхностных молекулярных слоях и содержит информацию именно о них связь с параметрами вещества в объёме должна устанавливаться теоретически (см. Поверхность). Так. при отражении от поверхности металла необходимо иметь в виду, что здесь имеется два физически выделенных поверхностных слоя один обусловлен шириной потенциального барьера и областью пробега отражённых от него электронов, а другой—текстурой, возникшей при обработке поверхности. Второй может быть устранён спец. приёмами, напр, ионной бомбардировкой, электрополировкой и др. связь свойств первого со свойствами в толще определяется уже теоретич. соображениями. Из формул Френеля следует, что линейно поляризованный свет, отражаясь от поверхности прозрачной среды, остаётся линейно поляризованным, однако сам факт дискретности структуры среды влечёт за собой возникновение нек-рой, очень небольпюй (Л/а 0" ), эллиптичности, Теоретически и экспериментально [3] было показано, что на  [c.609]


Смотреть страницы где упоминается термин Проблема однородности : [c.241]    [c.154]    [c.103]    [c.130]    [c.127]    [c.132]    [c.8]    [c.19]    [c.160]    [c.146]    [c.18]    [c.347]    [c.563]    [c.681]    [c.525]    [c.240]   
Смотреть главы в:

Стандартные образы для аналитических целей  -> Проблема однородности



ПОИСК



Однородность тел

Проблема п-тел



© 2025 Mash-xxl.info Реклама на сайте