Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Электрические и электромагнитные системы

Электрические и электромагнитные системы  [c.121]

В состав машин-автоматов входят различные устройства механического, гидравлического, пневматического, электрического и электромагнитного действия, а также счетно-решающие и кибернетические устройства. Независимо от назначения и устройства все машины-автоматы имеют общие структурные элементы, объединенные системой управления циклом. Можно выделить шесть основных групп структурных элементов 1) двигатели 2) передаточные механизмы 3) исполнительные механизмы 4) вспомога-  [c.424]


Магнитные свойства электрического тока могут быть по-разному использованы при изложении электромагнетизма, и в этом направлении нет единого общепризнанного метода, да, пожалуй, вряд ли представляется возможным указать такой метод. В 7.2 будут рассмотрены некоторые варианты и показано, как на основе совокупности выражений, описывающих электрические и электромагнитные взаимодействия, могут быть построены различные системы единиц.  [c.227]

Противодействующий момент в таком устройстве создается механической пружиной и электромагнитной системой с обратной связью. Последняя отличается большей стабильностью и легким управлением в результате изменения параметров электрической цепи обратной связи. В частности, используя дополнительную катушку 4, кроме катушек 3, включенных непосредственно в цепи электродов механотрона, мы получаем возможность осуществить электромагнитное. демпфирование колебаний подвижного элемента лампы. Для этого оказывается необходимым подавать в катушку 4 ток, сдвинутый в соответствующей фазе относительно тока в диагонали моста, в который включен механотрон. Для такой системы с обратной связью выполняется условие чем больше значение отношения противодействующего момента, создаваемого обратной связью, к противодействующему моменту пружины (мембраны) механотрона, тем выше стабильность работы устройства, так как в нем меньше сказываются нестабильности упругих свойств пружины, ее упругое последействие и остаточная деформация.  [c.138]

Сравнивающие устройства конструируются или выбираются исходя из принятых решений и типа измерительных элементов. В качестве сравнивающих элементов могут использоваться для угловых перемещений механические дифференциалы, сельсины в трансформаторном режиме для линейных перемещений — потенциометрические схемы для электрических параметров — электромагнитные системы для температуры, давления, крутящего момента — контактные системы.  [c.279]

Применение экспериментальных аналогий (моделей) основано на математической аналогии различных по своей физической сущности явлений. Явления формально описываются одними и теми же системами математических уравнений. Например, аналогами друг друга являются идеальные гравитационные, электрические и электромагнитные потенциалы, поскольку каждый потенциал удовлетворяет уравнению Лапласа.  [c.31]

На расположенный против катода анод 2 подается высокое постоянное напряжение 25 кВА и выше, которое создает в пространстве между электродами (катодом и анодом) электрическое поле. Под действием этого электрического поля излучаемые катодом электроны потоком устремляются в направлении анода. Для получения большей плотности потока электронов применяются электростатическая и электромагнитная системы, представляющие собой в совокупности так называемую электронную пушку 3.  [c.275]


Электрическим полем называется одна из частей электромагнитного поля, особенностью которой является то, что это поле создается электрическими зарядами или заряженными телами, а также воздействует на эти объекты незави-си.мо от того, движутся они или неподвижны. Электрическое поле описывается определенными силовыми и энергетическими характеристиками (III.1.8. Г). Если электрически заряженные частицы или тела неподвижны в данной системе отсчета, то их взаимодействие осуществляется посредством электростатического поля. Электростатическое поле является не изменяющимся во времени стационарным) электрическим полем. В общем случае электрическое и электромагнитное поля могут изменяться с течением времени переменное, нестационарное электрическое и электромагнитное поля).  [c.181]

В области электрических и магнитных измерений находят применение различные системы единиц, каждая из которых имеет те или иные достоинства и недостатки. Почти все эти системы построены а одном принципе они включают три основные механические единицы и четвертую электрическую или магнитную. Одними из первых были созданы абсолютные электростатическая и электромагнитная системы единиц, которые встречаются наряду с системой практических единиц и до настоящего времени.  [c.132]

В этой вводной главе прежде всего необходимо ввести основные определения и охарактеризовать свойства рассматриваемых волн оптического диапазона. Изложение начинается с анализа уравнений Максвелла и вытекающего из них волнового уравнения. При этом отмечается, что система уравнений Максвелла является следствием законов электрического и магнитного полей, обобщенных и дополненных гениальным создателем этой теории. Таким образом, сразу вводится понятие электромагнитной волны, возникающей в качестве решения волнового уравнения, и проводится рассмотрение ее свойств. При этом выявляется кажущееся противоречие между результатами экспериментальных исследований и решением волнового уравнения в виде монохроматических плоских волн. Данная ситуация может быть понята с привлечением принципа суперпозиции и спектрального разложения, базирующегося на теореме Фурье. В рамках этих представлений можно истолковать особенности распространения свободных волн в различных средах и определить понятия энергии и импульса электромагнитной волны, формулируя соответствующие законы сохранения. Рассмотрение излучения гармонического осциллятора, которым заканчивается глава, позволяет принять механизм возникновения излучения, облегчает модельные представления о законах его распространения и открывает возможность рассмотрения более сложных условий эксперимента, которое проводится в последующих главах.  [c.15]

Обобщение принципа изотопической инвариантности на все процессы, связанные с образованием, рассеянием и поглощением странных частиц, и причисление этих процессов к группе сильных взаимодействий означает, что все они протекают с сохранением изотопического спина и его проекции, а также барионного и электрического зарядов. Так как все перечисленные величины, кроме изотопического спина, сохраняются и в электромагнитных взаи-, модействиях, то из уравнения (80.23) следует закон сохранения странности для этик двух взаимодействий. Странность изолированной системы сохраняется в сильных и электромагнитных взаимодействиях. Таким образом, все быстрые процессы с участием странных частиц, будь то процессы их образования или взаимодействия, должны идти при постоянной суммарной странности системы. В частности, из закона сохранения странности вытекают два важных следствия  [c.612]

Результат разделения единого электромагнитного поля на части, представляющие собой электрическое и магнитное поля, зависит от выбора системы координат. При этом в случае инерциальных систем координат, движущихся друг относительно друга со скоростями, малыми по сравнению со скоростью света, сила Лорентца не изменяется при переходе от одной системы координат к другой.  [c.232]


Равновесное излучение (электромагнитное поле) мы представляем себе как непрерывную систему (континуум), состояние которой определяется несчетным множеством параметров — заданием непрерывных векторов электрического < и магнитного Ж полей. Поскольку, однако, законы статистической физики сформулированы для молекулярных систем, состояние которых характеризуется счетным множеством параметров, то, прежде чем применять статистическую физику к излучению, покажем, что колеблющийся континуум (непрерывная колебательная система) в динамическом отношении эквивалентна совокупности счетного множества гармонических осцилляторов.  [c.250]

Телефон (Тлф) — преобразователь электрических колебаний в звуковые, работающий в условиях нагрузки на ухо человека. Различают телефоны электродинамические, пьезоэлектрические, электромагнитные, капсюльные, электромагнитные с простой системой и электромагнитные с дифференциальной системой.  [c.68]

Система предельной защиты состоит из масляного выключателя 14 (приводится Б действие бойковым автоматом безопасности 15 ТНД), масляного выключателя 17 (приводится в действие бойко-Бым автоматом безопасности 16 ТВД и 27 пусковой турбины), гидродинамического автомата безопасности 7 (приводится в действие от импульсов импеллера 8) и электромагнитного выключателя (приводится в действие от импульсов электрической системы управления и защиты агрегата). Срабатывание системы предельной защиты происходит следующим образом при повышении частоты вращения вала ТВД или ТНД выше расчетного бойки автоматов безопасности сжимают пружины и выступающей частью ударяют по рычагу масляного выключателя 14 или 17. Рычаг, отклоняясь в сторону, освобождает поршень масляного выключателя, который под действием пружин поднимается и соединяет систему предельной защиты со сливом. Как только давление масла в системе предельной защиты упадет, стопорный клапан Ь под воздействием пружины перекроет поступление топливного газа в камере сгорания и турбоагрегат остановится.  [c.238]

К щести уравнениям (7.15)-(7.20) следует добавить седьмое - (7.2), связывающее заряд и ток и являющееся как бы мостом между левой и правой группами уравнений. В этих семи уравнениях присутствуют шесть величин Q, Е, О, I, В, Я, для которых единицы должны быть установлены соответствующим выбором коэффициентов пропорциональности. В уравнениях (7.2) и (7.15) коэффициенты во всех системах приняты равными единице. Поэтому для установления единиц шести величин мы располагаем только пятью уравнениями с подлежащими выбору коэффициентами пропорциональности. Очевидно, непротиворечивым образом можно распоряжаться четырьмя коэффициентами, поскольку одно из уравнений должно выражать результат определенного электростатического или -электромагнитного эксперимента. Из всех возможных вариантов выбора коэффициентов и, следовательно, способа построения систем единиц электрических и магнитных величин мы  [c.232]

Электрическое управление в кранах с многомоторным приводом осуществляется с помощью контроллеров или контакторов. В кранах с одномоторным приводом электрическое управление осуществляется системой электромагнитных муфт и тормозов, включение и выключение которых производятся крановщиком с пульта управления. Редко включаемые кулачковые муфты имеют при этом ручное управление.  [c.911]

Решение уравнений (1-6) для условий падения на частицу плоской линейно поляризованной электромагнитной волны производится в сферической системе координат по методу Фурье путем введения потенциалов электрических и магнитных колебаний. Общее решение задачи дается в виде бесконечных рядов по амплитудам парциальных волн электрических j и магнитных колебаний.  [c.15]

Написав закон взаимодействия параллельных токов и подставив в него все величины в практической системе единиц, мы вьшуждены будем ввести новую фундаментальную постоянную. Это вытекает из указаршой выше связи между числом основных единиц и числом фундаментальных постоянных. Новая постоянная, так называемая магнитная постоянная, будет определена ниже, в гл. 7, посвященной единицам электрических и электромагнитных велшшн.  [c.55]

Формально в СГС входят только геометрические, механические, электрические и электромагнитные единицы, поскольку в ней присутствуют только три основные единицы — сантиметр, грамм и секунда. Однако во всех исследованиях, охватьшающих тепловые явления, используется единица температуры кельвин. Кроме того, в молекулярной физике и химии число частиц (по современной терминологии - количество вещества) имеет в качестве единицы моль. В светотехнике к единицам СГС добавляется единица светового потока люмен. Образованная таким образом светотехническая система едишщ ранее обозначалась СГСЛ.  [c.58]

Консгрукции дисковых муфт станков различаются главным образом в части механизма включения и системы управления им наряду с наиболее распространенными механическими и электромагнитными системами нахоаят применение также гидравлические, пневматические, электрические и комбинированные системы. Тип и устройство механизма включения и системы управления нередко существенно отражаются и на конструкции самой муфты. Другие различия относятся к регулирующему устройству, к материалу, форме, размерам и числу дисков, к фор.ме скрепления их с ведущим и с ведомым элементами, к устройству смазки. Представление об этих различиях дают помещенные ниже фигуры.  [c.444]

Работы Фрелиха находятся в тесной связи с представлениями о высокой чувствительности некоторых биологических систем, особенно биомембран, к слабым электрическим и электромагнитным полям. Эти системы могут накапливать сигнал энергии и таким образом превышать тепловой Больцмановский шум (кТ), они могут обеспечиваться сравнительно малыми энергиями активации и при этом — быть защищены от тепловых флуктуаций [18]. С точки зрения эволюции, биологическая мембрана может быть рассмотрена как одна из наиболее элементарных диссипативных систем [61 ], которая является химически накачанной, открытой и устойчивой, а энергия, поставляемая ей, обеспечивается последовательностью обратных связей, как накопленного результата осцилляторных биохимических реакций [63 ]. Последние являются источником когерентных колебаний в биологической системе, которые могут переходить в низшие колебательные состояния, характеризующиеся высокой степенью пространственной когерентности по типу бозе-конденсации фононов. Общая теория когерентных колебаний в биологических системах была развита Фрелихом [34-38 ], где он рассматривает коллективные химические осцилляции, в которых белки, окружающие ионы и структурированная вода являются главными составляющими и осциллируют между сильным электрически полярным возбужденным состоянием и слабым полярным фоновым состоянием. Слабая химическая осцилляция в них связана с соответствующими электрическими колебаниями. Сильное электрическое взаимодействие между высокополярными состояниями в связи с сильным сопротивлением электрической проводимости налагает лимит-циклические ограничения на эти полярные системы, делая осцилляции крайне чувствительными к внешним электрическим и химическим влияниям. Ответы на них носят кооперативный характер, нелинейны и часто бывают сильными в ответ на сверхслабые стимулы [18 ].  [c.23]


Среди нелинейных систем особое место занимают автоколебательные системы. Термины автоколебания и автоколебательные системы предложены более 50 лет тому назад А. А. Андроновым. Явление автоколебаний проявляется в самых разнообразных формах, таких, как, например, свист телеграфных проводов, скрип открываемой двери, звучание человеческого голоса или смычковых и духовых музыкальных инструментов. Автоколебательными системами являются часы, ламповые генераторы электромагнитных колебаний, паровые машины и двигатели внутреннего сгорания, словом, все реальные системы, которые способны соверщать незатухающие колебания при отсутствии периодических воздействий извне. (Слово реальные здесь означает, что исключается идеализированный случай, когда система не обладает трением.) Характерные свойства автоколебательных систем обусловлены нелинейностью дифференциальных уравнений, которые описывают поведение таки с систем. Правые части этих дифференциальных уравнений обычно содержат нелинейные функции фазовых переменных л . На рис. 1.1 —1.4 приведены графики функций, которые отражают типовые нелинейности, встречающиеся при рассмотрении многих механических и электрических автоколебательных систем. Характеристика силы сухого (кулоновского) трения имеет вид, показанный на рис. 1.1, а, где у — относительная скорость трущихся  [c.10]

Приближенные расчеты показывают, что волна, соответствующая электрону, ускоренному полем в 150 В, равна 1 А, что на три порядка меньше длины волны видимого света. Поскольку электрону соответствует столь короткая волна, это наводит на мысль о возможности скор1струирования микроскопа, работающего с электронным пучком. Роль оптической системы могут выполнять соответствующим образом подобранные электрические и магнитные поля — электромагнитные линзы для электронного пучка. Этот прибор — электронный микроскоп — впервые был изготовлен в СССР акад. А. А. Лебедевым. Электронные микроскопы в принципе могут ПОЗВОЛИТЬ различить детали размером порядка 1 А. В настоящее время современные электронные микроскопы позволяют различить детали размером 25—30 А.  [c.203]

Система уравнений Максвелла позволяет корректно описать возникновение и распространение электромагнитных волн, пред- тавляющих совокупность быстропеременных электрического и магнитного полей. Такие волны вполне материальны и характеризуются определенной энергией и рядом других параметров, позволяющих экспериментально их исследовать. Все дальнейшее изложение фактически посвящено изучению физических процессов, связанных с распространением коротких электромагнитных волн и выявлением их свойств в различных условиях эксперимента.  [c.20]

Б = 1 и после подстановки этих значений в выражение (80.22) получаем 1=1/2+1/2 для я"-мезона z = — 1, 7с =—1, 5 = О и — 1 = — 1 и т. д. Так как все величины, входящие в уравнение (80.22), аддитивны, то оно справедливо для любой системы обычных частиц (нуклонов н я-мезонов), например для -атомных ядер. Напомним, что из уравнения (80.22) и законов -сохранения электрического и ядерного зарядов следует сохране-гние Тс для ядерного и электромагнитного взаимодействий.  [c.607]

Представим себе замкнутую полость объемом V с идеально отражающими стенками, нагретыми до температуры Т, в которой создан вакуум. Внутри полости существует электромагнитное поле. В результате отражений от стенок в полости образуется система бесконечно большого числа стоячих волн различной частоты и разного направления. Каждая такая стоячая волна представляет собой элементарное состояние электромагнитного поля. Теорема о равномерном распределении энергии утверждает, что и в этом случае при равновесии между стенками полости и электромагнитным излучением на каждую стоячую волну должна приходиться средняя энергия, равная 1гТ, где к — постоянная Больцмана. При этом, подобно то.му как средняя энергия гармонического осциллятора складывается из средней кинетической энергии, равной кТ 2, и средней потенциальной энергии, также равной кТ12, в случае электромагнитных стоячих волн полная средняя энергия кТ складывается из средних энергий электрического и магнитного полей, равных в отдельности кТ 2 каждая.  [c.138]

ОЭП называется прибор, в котором обработка входного сигнала осуществляется как оптическими, тар и электронными системами. Переход от обработки оптического сигнала к обработке электрического сигнала требует анализа изображения. Входной сигнал ОЭП - всегда многомерный оптический, а выходной — электрический или 01ггический. Физическим носителем оптического сигнала является электромагнитное излучение. По шое излучение объекта может состоять из пассивного собственного и отраженного излучений естествет ых и искусственных источников.  [c.4]

Построение системы управления на электрических элементах. Тактограмма, показанная на рис. 197, может относиться не только к механизмам, выполненным в виде пневмоцилиндров с распределителями, но и к другим видам механизмов. Покажем, например, построение системы управления тремя гидроцилиндрами с двусторонними распределителями, которые отличаются от ранее показанных пневмораспределителей только тем, что их подвижные части перемещаются от двух электромагнитов, В схеме управления (рис. 200) покажем только конечные выключатели и электромагнитные реле. Гидроцилиндры и распределители не показываем, так как их соединения аналогичны указанным на пневмосхеме.  [c.541]

На рис. 202, в показана реализация той же системы управления на электрических элементах. Операция да выполняется посредством нормально разомкнутого выключателя, а операция не — посредством нормально замкнутого. Операция и соответствует последовательному соединению. Механизмы подачи изделий в тот или иной бункер включаются от выходных электромагнитных реле /[, /2 и /з. Система включается в электрическую сеть после измерения изделия. Если выключатели х и л а остались ненажатыми, то под током окажется реле /з (возврат на обработку) если нажат только выключатель Х — то реле /г (годные изделия), и, наконец, при обоих нажатых выключателях под током будет реле /1 (бракованные изделия).  [c.547]

Полученные зависимости для расчета электрических параметров ЭМ системы ИПХТ-М для плавки металлов с электромагнитным отжа-тием мениска от стенок тигля дают расхождение между экспериментальными и расчетными данными менее 10%, что вполне приемлемо для инженерных расчетов.  [c.89]

Наиболее известным примером систем рассматриваемого типа является электромагнитное поле. Его можно описать или при помощи напряженностей электрического и магнитного поля или при помощи функций, являющихся векторными и скалярными потенциалами в обоих случаях рассматриваемые величины являются непрерывными функциями координат и времени. Эта форма описания в конце концов основана на наблюдении за движением обычных материальных частиц, по предположению несущих электрические заряды. Концепция непрерывного поля вводится для того, чтобы избежать понятия о взаимодействии частиц на расстоянии (дальнодействии). Источниками поля служат заряды, связанные с частицами. Такое представление совершенствуется и идеализируется настолько, что поле считается существующим в некоторой форме даже при отсутствии частиц. Свойства таких электромагнитных полей выражаются системой дифференциальных соотношений, известных как уравнения Максвелла. Они обычно будут упо.минаться как уравнения поля.  [c.151]


Система СГС охватьшала механические, электрические и магнитные измерения, причем произошло ее разделение на злектростатическую (СГСЭ) и злектромагнитную (СГСМ) системы. В первой за основу принималось взаимодействие электрических зарядов, а во второй -взаимодействие магнитных масс . Впоследствии оказалось целесообразным принять такой вариант системы, в котором величины, относящиеся к электростатическим явлениям, и величины, связанные с прохождением тока (сила тока, сопротивление), измеряются электростатическими единицами, а относящиеся к магнитным явлениям — электромагнитными. Эта система получила название Симметричной, или гауссовой, системы и обозначает СГС.  [c.53]

Были предложены системы с различными комбинациями показателей дий 10 ги1см (система Блон-деля), 10" г и 10 см (система Максвелла, в которой коэффициент Ро равен единице) и др. Наибольшее внимание привлекла система Джорджи а - Ъ, й = 2, т.е. 1 кг и 1 м. Обе эти единицы удобны для практики и непосредственно представлены международными эталонами. Поскольку система при этом образована так, что в нее была введена одна новая единица (любая из электрических или магнитных единиц, например ампер, вольт, ом), в выражениях для закона Кулона и электромагнитного взаимодействия неизбежно должны были появиться два новых коэффициента вместо одного в каждой из систем СГСЭ, СГСМ и СГС.  [c.235]

Работа устройства для изменения площади проходного сечения трубы (см. рис. 2.12) аналогична работе диафрагмы фотоаппарата и состоит в следующем. Электрический сигнал от системы управления (на основе ЭВМ СМ-4) через усилитель поступает в электромагнитный клапан нневмораспределителя, питаемый сжатым воздухом с давлением 0,6 МПа. В зависимости от исследуемого нестационарного процесса (уменьшение или увеличение расхода) сжатый воздух из пневмораспределителя поступает в одну из двух пневмокамер с пружинным энергоаккумулятором типа 20-20. При этом перемещается шток камеры, пере-  [c.72]

Электробезопасность — система организационных н технических мероприятий и средств, обеспечивающих защиту людей от Ефедного и опасного воздействия электрического тока, электрической дуги, электромагнитного поля и статического электричества Гб].  [c.521]


Смотреть страницы где упоминается термин Электрические и электромагнитные системы : [c.82]    [c.19]    [c.292]    [c.180]    [c.92]    [c.47]    [c.97]    [c.41]    [c.219]    [c.36]    [c.132]    [c.226]   
Смотреть главы в:

Измерения при теплотехнических исследованиях  -> Электрические и электромагнитные системы



ПОИСК



Система электромагнитная

Электрическая система

Электромагнитные



© 2025 Mash-xxl.info Реклама на сайте