Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Электрическое сопротивление проводимость

В том, что электрическое сопротивление металлов обусловлено взаимодействиями электронов проводимости с различными дефектами решетки, убеждает и тот факт, что удельное сопротивление кристаллов металлов сильно зависит от наличия в них примесей. Например, введение 1% примеси марганца увеличивает удельное сопротивление меди в три раза.  [c.152]

В первом приближении (пренебрегая активным сопротивлением катушки и магнитным сопротивлением остальных участков цепи) индуктивность Е, электрическое сопротивление г и проводимость у можно выразить формулами  [c.144]


Удельная электрическая проводимость g вещества — величина, обратная удельному электрическому сопротивлению  [c.14]

Намагничен ность Электрическое сопротивление Электрическая проводимость Удельное электрическое сопротивление Удельная электрическая проводимость Магнитное сопротивление Магнитная проводимость  [c.27]

Электрическая проводимость Удельное электрическое сопротивление  [c.29]

Диэлектриками называют вещества, основным электрическим свойством которых является способность к поляризации и в которых возможно существование электростатического поля. Такое поле может длительно сохраняться лишь в средах, плохо проводящих электрический ток. Электропроводность — способность проводить электрический ток—обусловлена наличием в веществе свободных носителей заряда—электрически заряженных частиц, которые под действием внешнего электрического поля направленно перемещаются сквозь толщу материала, создавая ток проводимости (положительно заряженные носители движутся по направлению вектора напряженности электрического поля Е, отрицательно заряженные— против). Параметром вещества, количественно определяющим его электропроводность, является удельная электрическая проводимость у, См/м, а также удельное объемное электрическое сопротивление p = l/Y, Ом-м, причем  [c.543]

Ротационные вискозиметры весьма удобны для испытания высоковязких жидкостей масел при низких температурах, расплавленных битумов, смазок различных суспензий и т. п. При определенном конструктивном исполнении ротационного вискозиметра можно совместить определение вязкости и удельного электрического сопротивления жидкости (по току утечки между цилиндрами), что позволяет исследовать связь проводимости с вязкостью (например, для расплавленных стекол, смол и т. п.).  [c.185]

Многие электрофизические свойства твердых тел определяются взаимным расположением зоны проводимости и валентной зоны. В частности, именно от этого фактора зависит значение электрического сопротивления вещества и, соответственно, его тип (проводник, полупроводник, диэлектрик).  [c.8]

Удельное электрическое сопротивление р и удельная проводимость у проводниковых материалов  [c.10]

Удельная электрическая проводимость, м/см-мм Удельное электрическое сопротивление, ом- м-10  [c.240]

Параметром, определяющим способность электротехнического материала проводить электрический ток под действием приложенного постоянного направления, является удельная электрическая проводимость. На практике также широко пользуются удельным электрическим сопротивлением—величиной, обратной удельной проводимости.  [c.8]


По удельному электрическому сопротивлению р металлические проводниковые материалы можно разбить на две основные группы металлы высокой проводимости, у которых р при нормальной температуре составляет не более 0,05 мкОм-м, и металлы и сплавы высокого сопротивления, имеющие при тех же условиях р не менее 0,3 мкОм-м. Проводниковые материалы первой группы применяются в основном для изготовления обмоточных и монтажных проводов, жил кабелей различного назначения, шин и т. д. Проводниковые материалы второй группы используются при производстве резисторов, электронагревательных приборов, нитей ламп накаливания и т. п.  [c.111]

Опыт, накопленный при изучении проводимости металлов и сплавов, экспериментальная техника, созданная для исследования электроизоляционных материалов, служат базой для определения электрических свойств покрытий. Рассматриваются многие свойства удельное электрическое сопротивление, электрическая прочность , электрическая проводимость, контактное сопротивление между покрытием и основным металлом, диэлектрическая проницаемость,, температурный коэффициент электрического сопротивления. Что касается керамических покрытий, которые используются в качестве электроизоляционного материала, то основным их свойством следует считать электрическую прочность. За электрическую прочность часто принимают напряженность пробоя, отнесенную к усредненной толщине покрытия.  [c.85]

Практически скорость коррозии оценивают по изменению соотношения электрического сопротивления корродирующего образца К (Ом) к начальному значению йц. Обычно за принимают электрическое сопротивление образца с надежным изоляционным и защитным покрытием. В результате коррозии образца отношение й/йд увеличивается, так как продукты коррозии металла имеют электрическую проводимость на несколько порядков меньшую, нежели металл.  [c.114]

Всякая термообработка сталей, приводящая к образованию твердого раствора (аустенита или мартенсита), понижает ее электрическую проводимость. При закалке на мартенсит электрическое сопротивление повышается. При отпуске оно уменьшается в связи с переходом тве р 110  [c.110]

Добавочное электрическое сопротивление измеряли на никеле чистоты 99,99 % (рекристаллизованный при 810 К, размер зерен 25 мкм) с точностью 3 пОм м при температуре жидкого азота. На рис. 1 показана последовательность точек измерения. При определении проводимости предполагали постоянный общий объем (измеряемый объем 5 X 4 X 25 мм ).  [c.171]

Затем находят так называемое сопротивление растеканию для анодов i p — электрическое сопротивление данной системы электродов в среде заданной проводимости.  [c.65]

Металлические проводниковые материалы подразделяются на материалы высокой проводимости и материалы (сплавы) высокого электрического сопротивления (высокоомные).  [c.244]

Сплавы Серебро — кадмий образуют ограниченную область твердых растворов. Применяемые для контактов сплавы лежат в области -твердых растворов, т. е. это сплавы, богатые серебром. Добавки кадмия понижают температуру плавления, но повышают удельное электрическое сопротивление. Сплавы обладают весьма ценным свойством хорошо работать в дуговом режиме. Это обусловливается свойствами окиси кадмия (образующейся при нагреве сплава контактной дугой), которая при 900—1000 °С разлагается со взрывом, производя дугогасящее действие без нарушения контактной проводимости. Недостатком серебряно-кадмиевых контактов является значительная свариваемость и сплавление нх при больших токах из-за низкой температуры плавления сплавов. Этот недостаток устраняется при изготовлении контактов методом металлокерамики.  [c.298]

В качестве контактных материалов могут быть использованы вольфрамомолибденовые сплавы, представляющие собой неправильный ряд твердых растворов. Максимум электрического сопротивления, твердости и минимум температурного коэффициента сопротивления в сплаве с 45 % Мо, минимум эрозии — в сплаве с 34 % Мо. С увеличением молибдена в сплавах уменьшается коррозионная устойчивость на воздухе, нарушается проводимость. Сплавы вольфрама с молибденом, в частности с 34 % Мо, рационально использовать при работе в среде, обеспечивающей отсутствие окисления (вакуумные или наполненные инертным газом выключатели).  [c.303]


Стимулом к созданию новых фотоэлектрических приемников послужило открытое У. Смитом в 1873 г. явление, при котором в результате поглощения излучения снижается электрическое сопротивление материала без изменения его температуры. Это явление получило название эффекта проводимости, или внутреннего фотоэффекта. Смит обнаружил, что при облучении светом селеновой пластинки ее электрическое сопротивление уменьшается. Указанное открытие вызвало в XX в. бурное развитие фотоэлектрических приемников с внутренним фотоэффектом, получивших в дальнейшем название фотосопротивлений, что, в свою очередь, было новым качественным скачком в развитии приемников излучений и привело к появлению ряда оптико-электронных приборов различного назначения.  [c.382]

Тепловое сопротивление R имеет структуру, аналогичную электрическому сопротивлению = причем коэффициент теплопроводности X соответствует электрической проводимости 1/р. Величина г есть тепловое сопротивление пластины, отнесенное к единице поверхности, сквозь которую проходит тепло.  [c.25]

За пределом устойчивости с увеличением скорости фильтрации электрическое сопротивление слоя продолжает расти сначала быстро, а потом замедленно. Такой характер зависимости, видимо, тесно связан с неоднородностью псевдоожижения газом. Если пренебречь проводимостью газовых промежутков, то в идеально однородном псевдоожиженном слое уже при малых числах псевдоожижения полностью прекратилось бы прохождение тока. В противоположность этому в реальном неоднородном псевдоожиженном слое даже при больших числах псевдоожижения сохраняется соприкосновение частиц, собранных в агрегаты, и через слой может проходить ток, пока сами агрегаты остаются непрерывной фазой . Лишь после этого можно ожидать  [c.171]

Примем следующие обозначения П — коэффициент Пельтье, определяющий количество тепла, поступающего к ХОЛОДНЫМ спаям элемента, приходящееся на единицу силы тока ( холод , генерируемый на единицу силы тока) / — сила постоянного тока, проходящего через элемент Я — электрическое сопротивление элемента К— термическая проводимость элемента АГ — разность температур горячих и холодных спаев.  [c.159]

В настоящей работе рассматривается метод электротепловой аналогии, для которой аналогами являются температура и электрический потенциал (напряжение) коэффициент теплопроводности и удельная электрическая проводимость теплоемкость и электрическая емкость термическое сопротивление и электрическое сопротивление плотность теплового потока и электрический ток.  [c.14]

Сигнализаторы первого типа основаны на измерении косвенных величин, например электрического сопротивления или теплоотдачи, проводимости и др.  [c.194]

Удельная электрическая проводимость, м/ом мм Удельное электрическое сопротивление, омм10  [c.240]

Алюминий. Плотность р = 2,72 г/см , = = 658° С,кристаллизуется в решетку ГЦК (К12) р о = = 0,0269 ом-мм /м Г/Ср = 0,0042 1/град а = 23,8 X X 10" 1/град, Og = 60 Мн/м (6 кгс/мм ) б = 35% ф = 80%. Алюминий — легко окисляющийся металл, однако пленка (AI2O3) надежно защищает алюминий от окисления. Пленка АЦО., имеет очень высокое удельное электрическое сопротивление (р = 10 ом-мм7м), благодаря чему она может служить надежным изолятором. Увеличение прочности алюминия достигается холодной пластической деформацией. НагартованныА алюминий имеет следующие механические свойства = 250 Мн/м (25 кгс/мм ) 6=8%. Примеси (Мп, V, Mg, Fe, Si и др.) значительно уменьшают проводимость алюминия. В зависимости от содержания примесей (Mg, Мп, Si) алюминий имеет следующую маркировку АВ1 (99,9% А1)— электролитический алюминий высокой чистоты, АВ2 (99,85% А1), АОО (99,7% AI), АО (99,6% А1), А1 (99,5% А1), А2 (99,0% AI), АЗ (98,0% А1). Алюминий АВ1 применяют для изготовления фольги электролитических конденсаторов, АВ2 — для изготовления волноводов алюминии в этом случае подвергают оксидированию, в связи с чем не требуется серебрение внутренней поверхности волноводов. Алюминий АОО, АО и А1 применяют в производстве биметаллов, а А1, А2, АЗ — для корпусов электролитических конденсаторов, пластин воздушных конденсаторов, стрелок и корпусов приборов, экранов и т. п. Алюминий используют также при изготовлении электродов в разрядниках, выпрямителях тлеющего разряда, для электродов в электроннолучевых трубках и т. д.  [c.269]

При создании электрических моделей применяются два способа. По первому способу, согласно которому электрические модели должны повторять геометрию исследуемой системы, их изготавливают из материала с непрерывной проводимостью (электропроводная бумага, фольга, электролит и т. д.) — это модели с непрерывными параметрами процесса. Вырезав из электропроводной бумаги фигуру, соответствующую поперечному сечению тела, и создав на ее контурах граничные условия, можно, измеряя и (х, у), найти температурное поле I х, у). Граничные условия первого рода задаются некоторым потенциалом и, второго — плотностью тока, третьего — электрическим потенциалом и , соответствующим температуре окружающей среды и добавочным электрическим сопротивлением Яа, имитирующим термическоб сопротивление теплоотдачи 1/а.  [c.192]

Вследствие более яркого проявления поверхностного эффекта значения электрических сопротивлений и мощности очевидно будут большими, чем вычисленные по формулам для р = onst при том же значении В общем случае следует, как это сделал в своей работе академик Л. Р. Нейман [22], учитывать и явление гистерезиса. Однако расчет показывает, что уже при Я > 5 -10 а м потери на гистерезис пренебрежимо малы по отношению к мощности, определяемой током проводимости, и с увеличением напряженности магнитного поля доля их продолжает уменьшаться. Так как при индукционном нагреве Я>5-Ю -й/ж, то гистерезис мы в расчет принимать не будем.  [c.49]


Измерения удельного электрического сопротивления детонационного покрытия из твердого сплава ВК15 в направлениях, перпендикулярном и параллельном оси напыления, выявили анизотропию электропроводимости. Численные значения удельного электросопротивления в двух взаимно перпендикулярных направлениях отличаются в 2—3 раза [16, 139]. Наличие границ между слоями и деформированными частицами в направлении, перпендикулярном оси напыления, значительно уменьшает проводимость, в то время как проводимость в направлении, параллельном оси напыления, приближается к этой характеристике для спеченного твердого сплава,, так как в этом случае определяющую роль играет проводимость отдельных слоев [16, 139].  [c.87]

Более того, как показали исследования, сверхпроводимость не исчерпывается.только обращением в нуль электрического сопротивления проводника (идеальной проводимостью). Не менее фундаментальным свойством вещества в сверхпроводящем состоянии является идеальный диамагнетизм. Это свойство, открытое Мейсснером и Оксенфельдом в 1933 г., состоит в том, что вещество, помещенное в магнитное поле (рис. 7.13, а), при переходе в сверхпроводящее состояние не замораживает находящееся в нем магнитное поле, как это должно было бы быть при простом переходе вещества в состояние с нулевым сопротивлением, а выталкивает его из своего объема (рис. 7.13, б), что присуще идеальным диамагнетикам, обладающим нулевой магнитной проницаемостью. Это явление получило название эффекта Мейсснера — Оксенфельда.  [c.197]

Современные ЭЦВМ позволяют выполнить исследования колебаний механической системы практически любой сложности. Но изменение структуры модели требует разработки новых алгоритмов и программ расчета, поэтому в последние годы уделяется большое внимание исследованию общих закономерностей колебания сложных механических систем, не зависящих от их конкретной структуры. Наиболее полно эти вопросы освещаются в литературе по акустике, в особенности в работах Е. Скучика [1]. При этом вместо принятых в литературе по механике понятий динамической жесткости, податливости и гармонических коэффициентов влияния применяется терминология, установившаяся для описания переходных процессов в электрических цепях импеданс, сопротивление, проводимость и т. ц. Это связано с использованием получившего широкое распространение в последние годы математического аппарата теории автоматического регулирования и, в частности, с рассмотрением задач в комплексной области. Переход в комплексную область позволяет свести динамическую задачу для линейной системы при гармоническом возбуждении к квазистатической с комплексными коэффициентами, зависящими от частоты. После определения комплексных амплитуд сил и перемещений у, действующие силы и перемещения выражаются действительными частями произведений и  [c.7]

В наст оящее время промышленные методы очистки позволяют получать монокристаллы германия с удельным электрическим сопротивлением, близким к собственному, а монокристаллы кремния — с удельным электрическим сопротивлением, равным 3000— 5000 Ом См. Высокоомный кремний, как правило, имеет дырочный тип проводимости из-за неконтролируемого содержания в нем бора. В электронной технике обычно используются примесные полупроводники, удельное электрическое сопротивление которых лежит в широких пределах (0,1—10 ОмХ Хсм).  [c.401]

Измерения показали, что характер кривых lg/ = /(J) остался таким же, как при сжигании мазута (рис. 8-18 и рис. 8-12,а). Как видно из графика, с увеличением парциального давления H2SO4 кривые сдвигаются вправо и становятся более пологими. Наиболее важным обстоятельством следует считать то, что на стенде и котле при температуре колпачка, отвечающей термодинамической температуре точки росы газовой смеси, электрическая проводимость не претерпевает качественного изменения и в зависимости от принятого для отсчета значения R могут быть получены значения температуры точки росы от 80 до 200° С. Из этого же графика видно, что прирост фиксируемой по методу Джонстона температуры точки росы, наблюдаемый при переходе от одного парциального давления H2SO4 к другому, зависит от заданного для отсчета электрического сопротивления и увеличивается вместе с ним.  [c.232]

При возрастании плотности тока электродинамические силы, стремящиеся, стянуть беспорядочно расположенные цепочки в несколько преобладающих каналов прохождения тока, становятся соизмеримыми с гидродинамическими силами перемешивания слоя, препятствующими такому упорядочению. При стягивании можно ожидать уплотнения контактов и укорочения цепочек, что должно приводить к падению удельного электрического сопротивления псевдоожиженного слоя с повышением плотности тока даже до упом инавшегося выше увеличения проводимости газовых промежутков и изменения механизма электропроводности слоя.  [c.175]

Из опыта известно, что в отоутствие движения, гравитации, капиллярности, магнетизма и электричества чистое вещество имеет лишь два независимых свойства. Из известных свойств чистого вещества, которые могут быть количественно оценены, необходимо назвать давление, темпера-туру, удельный объем, внутреннюю энергию, вязкость и электрическое сопротивление. Этот перечень может быть расширен за счет опытных данных термодинамики и других наук. Из числа всех свойств можно выбрать два свойства, не зависящих друг от друга, и если их величины Заданы, то и величины всех других свойств будут также иметь вполне определенные 31начения. Если после некоторого изменения состояния будут восстановлены первоначальные значения двух выбранных свойств, то первоначальные величины всех других свойств будут также восстановлены. Обычно любые два свойства бывают независимыми друг от друга, хотя имеются очевидные исключения так, одно свойство -не 1Может быть независимым от другого, если оно является его функцией по определению, например удельный объем зависит от плотности, а электрическое сопротивление—от электрической проводимости. Менее очевидным исключением является сочетание давления и температуры эти свойства являются независимыми для чистого вещества в паровой или жидкой фазе, но не для смеси фаз.  [c.16]

Фотопроводимость. Эффект фотопроводимости обнаружен Смитом, сообщившим об уменьшении электрического сопротивления селена при его освещении [29]. Увеличение проводимости при освещении является результатом увеличения. числа носителей, т. е. дырок и электронов, под действием фотонов света. При прекращении освещения проводимость умень шается до величины, имевшейся перед освещением [201.  [c.651]


Смотреть страницы где упоминается термин Электрическое сопротивление проводимость : [c.288]    [c.124]    [c.447]    [c.196]    [c.271]    [c.17]    [c.199]    [c.247]    [c.145]    [c.304]    [c.250]    [c.37]   
Справочник рабочего-сварщика (1960) -- [ c.34 ]



ПОИСК



Проводимость

Проводимость электрическая

Сопротивление электрическое



© 2025 Mash-xxl.info Реклама на сайте