Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Когерентные источники

Пусть имеем два когерентных источника Si и Sj (рис. 4.2), колеблющихся с одинаковой частотой. Когерентные волны, исходящие из этих источников, встретятся в некоторой точке экрана А, отстоящей от соответствующих источников на расстояниях di и d. . Рассматриваемые в точке А колебания описываются уравнениями  [c.71]

Метод Линника. Перед точечным источником 5 (рис. 4.15) расположен полупрозрачный экран с небольшим отверстием в центре экрана. Полупрозрачная пластинка пропускает фронт падающей на нее волны, несколько ослабляя ее, без искажения. Отверстие 5 , согласно принципу Гюйгенса, играет роль вторичного излучения с центром в нем. Оба фронта волны от источников S и 5i, встречаясь, дают картину интерференции. В отличие от всех предыдущих случаев в последней схеме, предложенной в 1935 г. советским ученым В. П, Линником, когерентные источники не лежат на пря-  [c.84]


При интерференции двух когерентных источников S l и S"j, расположенных на расстоянии 2/ один от другого, получаем следующее распределение интенсивности на экране в зависимости от высоты h (расстояния от оси симметрии)  [c.198]

Когерентные источники S2 и S 2, сдвинутые относительно S и S"i на расстояние 2d, образуют на том же экране другую интерференционную картину, смещенную относительно картины, образованной S l и S"], также на расстояние 2d, т.е.  [c.198]

Рис. 4.1. К расчету разности фаз волн, идущих от двух когерентных источников. Рис. 4.1. К расчету разности фаз волн, идущих от двух когерентных источников.
В случае двух когерентных источников света, например источника и его изображения в зеркале, в окружающем пространстве будет иметь место распределение амплитуд различных значений от 1 - - Й2 до 01 — а . В частности, когда амплитуды, обусловливаемые обоими источниками, равны (01 = а = о), то амплитуда результирующего колебания лежит между крайними значениями — нулем и 2а, а соответствующие интенсивности — между нулем и 4о .  [c.88]

Излучение электромагнитных волн совокупностью когерентных источников  [c.771]

Среднее расстояние, в пределах которого гребни волны сохраняют щаг , определяется длиной когерентности источника, излучающего. эту волну. Чем больше длина когерентности, тем монохроматичнее источник света и тем легче получить интерференционную картину с помощью излучаемых им волн. Источник света с большой длиной когерентности обладает высокой степенью временной когерентности.  [c.11]

При восстановлении голограммы требования к когерентности источников излучения значительно менее строгие, чем при ее получении. Требования к временной когерентности излучения определяются тем, что изображения объекта, полученные при дифракции света разных длин волн, не должны быть сдвинуты заметно друг относительно друга. Требования же к пространственной когерентности источников сводятся при восстановлении к ограничению угловых размеров источников. Этим требованиям удовлетворяют многие лазерные источники света, но неплохие результаты также можно получить при использовании ртутных ламп сверхвысокого давления, а иногда даже обычных ламп накаливания.  [c.36]


Принцип образования изображения в системе может быть рассмотрен как процесс двойной дифракции. Первая дифракция происходит на объекте 2, освещаемом плоской монохроматической волной, образуемой когерентным источником света /. Объект 2 расположен в передней фокальной плоскости объектива 3, который образует в своей задней фокальной плоскости 4 пространственный спектр объекта (т. е. осуществляет преобразование Фурье объекта). В плоскости голограммы 4, которая одновременно является передней фокальной плоскостью второго объектива 5, находится мультиплицирующий элемент, представляющий собой голограмму набора точечных источников, число и расположение которых соответствует желаемому числу и расположению размноженных изображений. В результате в плоскости голограммы 4 имеем произведение двух спектров Фурье объекта и набора точечных источников. Второй объектив 5 в свою очередь осуществляет преобразование Фурье объекта, находящегося в его фокальной плоскости. Как следствие. этого в плоскости изображения 6 получаем совокупность изображений исходного объекта, причем линейное увеличение системы 7 и размер изображений определяются соотношением фокусов объективов системы 7==/,//,. Очевидно, что размеры отдельных модулей могут быть большими (более 5—10 мм), они ограничиваются лишь полем изображения второго объектива 5. Это является большим преимуществом системы.  [c.63]

В другой конструкции голографического зонда (рис. 31, б) предварительно подготовленная небольшая фотопластинка или фотопленка крепится в оправе на световоде. Для уменьшения влияния отражений на границе раздела между подложкой эмульсии и торцом световода находится иммерсионная жидкость. Ввиду меньшей механической стабильности такая конструкция используется при импульсном режиме освещения когерентным источником. При перезарядке фотопластинки(или пленки) устройство может применяться многократно.  [c.81]

Рассмотрим простейший случай, когда в однородной среде два когерентных источника 5[ и излучают сферические волны (рис. 170). Разность фаз обеих волн в какой-либо точке А, очевидно, равна  [c.213]

Для анализа условий возникновения и наблюдения интерференции рассмотрим картину наложения волновых фронтов, идущих от двух синфазных (имеющих разность фаз Лф = 0) когерентных источников света 1 и 2 с длиной волны X под углом у (рис. 11.5). На экране 3, помещаемом в любом месте области взаимного пересечения световых волн от источников, будет наблюдаться ин-  [c.222]

Корпускулярная интерпретация опыта Юнга. Опыт Юнга (1801) по интерференции света от двух взаимно когерентных источников сыграл историческую роль при переходе от теории истечения Ньютона к волновой теории света. Взаимно когерентными источниками являются две щели и Sj в непрозрачном экране, на который падает плоская волна (рис. 24). От каждой из щелей в точку экрана с координатой у приходит луч света, дающий на экране интенсивность освещения /д = 1x 1 при закрытой другой щели. При открытых одновременно двух щелях интенсивность  [c.44]

Полная схема лазерного анемометра с необходимым минимумом измерительной аппаратуры показана на рис. 3.7. Луч от когерентного источника (лазера) 1 при помощи зеркала 2 направляется на делительную пластинку 3, где раздваивается на примерно равные по мощности пучки. Блок / формирующей и передающей оптики, включающий, кроме пластинки 3, зеркало 4 и линзу б, фокусирует скрещивающиеся лучи в исследуемой точке канала II. Рассеянное на движущихся с потоком частицах излучение улавливается блоком приемной оптики III, состоящим из апертурной диафрагмы 6, объектива 7, диафрагмы поля зре-ни.ч 8 и фотоэлектронного умножителя (ФЭУ) 9. Сигнал с ФЭУ поступает в блок обработки IV, где усиливается широкополосным усилителем II я подается на панорамный анализатор спектра 12. Типичное изображение на экране спектроанализатора показано на рис. 3.6,6.  [c.120]

Пучок излучения когерентного источника (см. рис. 7, г) претерпевает дифракцию иа изделии и в плоскости сканера образуется дифракционное изображение изделия, соответствующее дифракции Фраунгофера. Дифракционное  [c.64]


Для измерения полей малых перемещений точек поверхности материалов и элементов конструкций эффективно применяют метод голографической интерферометрии, основанный на использовании когерентных источников света.  [c.392]

В некоторых спектральных исследованиях наличие высокой степени когерентности источника играет решающую роль, и такие явления, как гетеродинное биение, вынужденное комбинационное рассеяние, радиационное эхо и др., не могут быть наблюдены при обычном некогерентном источнике света, даже если он имеет высокую спектральную плотность, сравнимую с лазерным излучением.  [c.218]

Следовательно, основными преимуществами когерентного или почти когерентного источника, дающего излучение в виде сферической или плоской волны ограниченного поперечного сечения, является то, что излучение может быть сконцентрировано с помощью линз и зеркал в изображение, яркость которого больше яркости первоначального источника излучение в виде почти плоской волны можно направить на удаленный объект с очень малыми дифракционными потерями, в то время как лишь малая часть излучения от некогерентного источника может быть преобразована в почти плоскую волну.  [c.503]

Голограмма движущегося объекта. На Г. люжно записать волновые ноля излучения, рассеянного движущимися объектами (в т. ч. и движущимися нестационарно [3]). Отображающими свойствами обладают но только стоячие, но и бегущие волны интенсивности, возникающие при интерференции волновых полей, различных частот. Такие волны интенсивности возникают, напр., при регистрации Г. движущегося объекта О, к-рый рассеивает излучение неподвижного когерентного источника S (рис. 2). Рассеянное излучение, сдвинутое по частоте вследствие эффекта Доплера относительно падающего, складывается с ним, образуя систему бегущих волн интенсивности. Вся эта система перемещает-  [c.503]

В следующем. Перед экраном 3i располагается дополнительный экран Э с одной щелью S (рис. 4.10). Щели на экранах, согласно иршщипу Гюйгенса, играют роль вторичных источников. Так как волны, исходящие от и S.,, получены разбиением одного и того же волнового фронта, исходяилего из S, то они являются когерентными и в области перекрывания дают штерфереиционную картину. Щели Si и So, играющие роль когерентных источников, называются виртуальными когерентными источниками.  [c.81]

Бизеркала Френеля. Два плоских зеркала (рис. 4, И) составляют друг с другом угол, близкий к 180" (угол ф мал). Волновой ( )ронт света, идущего от источника S, с помощью этих зеркал разбивается на два. Встречаясь друг с другом, они дают в области взаимного перекрывания интерференционную картину. Мнимые изображения источника S в зеркалах Si и Sj играют роль когерентных источников — являются виртуальными когерентными источ-  [c.81]

При решении этой задачи возникают трудности и часто приходится принимать компромиссное решение. Так, например, при исс.тедовании проблем классической волновой оптики нельзя игнорировать открывшуюся ныне возможност) использования когерентных источников света, хотя затруднительно детальное исс.педо-вание фундаментального понятия когерентности (как это было сделано, например, в монографии Борна и Вольфа, рассчитанной на 6o. iee подготовленного читателя).  [c.6]

Однако можно представить себе более сложные случаи. Предположим, что расстояние между двумя когерентными источниками меньше т. е. 5x52 = 2/ < В таком случае, как легко  [c.88]

Идеальный когерентный источник излучает свет строго одной частоты. Реальный лазер излучает спектр колебаний— спектральную линию, в которой присутствуют несколько частот. Ширина спектральной линии связана с понятием временной когерентности и в конечном счете определяет допустимую глубину голографируемой сцены, т. е. максимальную разность хода / между объектным и опорным пучками, допустимую без уменьшения контраста интерференционной картины 1=к / к.  [c.35]

Серьезной проблемой в описанных выше конструкциях зонда является жесткое крепление объектов (особенно. Т1Ч) касаегся биологических объектов), исключающее возможность относительного смещения объекта и фотопластинки. Решение проблемы механической стабильности объекта относительно освещающего когерентного источника может быть дости[ нуто применением гибкого во-локонЕЮго световода щзя передачи излучения лазера.  [c.81]

Кавендиша опыт 318 Карданов подвес 440 Качение катушки 430 Качения трение 431 Качество крыла самолета 560, 569 Квазистационарности условие 483 Кеплера законы тяготения 313 Когерентные источники 712  [c.748]

Понятия о когерентных источниках волн и о когерентных волнах являются физической абстракцией. Лишь идеализируя при определенных условиях реальные источники волн и реальные волны, можно их называть когерентны.мн. Когерентные источники волн можно осуществить, например, укрепив па одно вибраторе два проволочных штифта. Если ими одновре.менио ударять по поверхности воды, налитой в волновую ванну, то можно наблюдать две близкие к когерентным волны, разбегающиеся из двух центров и налагающиеся друг на друга.  [c.212]

Рассмотрим математическое описание преобразующего действия оптической системы для когерентных, некогерентных и частично когерентных источников.  [c.48]

Выражение для передаточной функири слоя пространства зависит от степени когерентности источника излучетя. При прохождении когерентного излучения через слой пространства ei о фильтрующие свойства описываются так же, как и свойства когерентной оптической системы. Слой, пространства называют по аналогии так е когерентным. Некогерентный слой пространства описывается с помощью оптической передаточной фун-кпни. Влияние слоя пространства на часшчно когерентное излучение, на взаимную функцию когерентности считают эквивалентным действию че-  [c.55]


В таблице приведены основные технические данные восьми модификаций стробоскопических микроскопов, разработанных на базе серийных объективов. Применение когерентных источников света со сверхкороткими импульсами (10 —с) [4] позволяет реализовать импульсную голографическую микроскопию [6], что открывает широкие перспективы в изучении мгновенного физико-механического состояния деформируемой микроповерхности при весьма высоких ускорениях.  [c.304]

Дана краткая характеристика приборов и устройств контроля усталостных разрушений металлов и натурных деталей в рабочих условиях. Показана перспективность использования когерентных источников света со сверхкороткими импульсами в стробоскопической микроскопии. Приведены примеры использования фотоэлектрографа и волоконной оптики для создания встроенных средств контроля.  [c.433]

Оптическая диагностика двухфазных сред, бурно развивающаяся в последнее время, использует лазерные доплеровские анемометры по дифференциальной схеме (ЛДА) и лазерные решеточные анемометры (ЛРА). Различие между ними заключается в том, что пространственная решетка — модулятор в первом приборе формируется за счет интерференции двух когерентных лучей лазера в потоке, а во втором — либо проецируется в поток оптической системой, либо создается на фотоприемнике рассеянного света. Отсюда следует, что ЛРА не требует когерентного источника света и поэтому соответствующий прибор более прост по оптической схеме. Однако в связи с тем, что интерференция двух гауссовских пучков когерентного света дает решетку с синусоидальным пространственным распределением освещенности, ЛДА имеет более чистый сигнал с малым содержанием гармоник. В ЛРА обычно используют решетку с пространственным распределением освещенности (пропускания) в виде меандра, но сигнал содер-.жит высшие гармоники, т. е. менее чист . Энергетическая оценка ЛДА и ЛРА показывает, что при равных условиях ЛДА требует в 2 раза менее мощный источник света, так как при интерференции пучков в месте максимальной осве-сЩеиности пространственной решетки волны света складываются, тогда как в ЛРА половина мощности источника пропадает — затеняется пространственной решеткой-модулятором. Сравнительная оценка ЛДА и ЛРА, использующих одну и ту же оптику, проведена в [35, 122].  [c.52]

В схеме во встречных пучках (схема Д е н и с ю к а) О п S находятся по разные стороны от голограммы (рис, 4), Период интерференц, картины Л в этом случае минимален, а трсбовапия к разрешающей способности фотоматериала соответственно максималь-ны. Преимущества голограмм во встречных пучках заключаются в том, что сопряжённое изображение О в этом случае отсутствует и для восстановления изображения необязателен когерентный источник — такую голограмму можно реконструировать источником естеств. света, напр, лампой накаливания.  [c.510]


Смотреть страницы где упоминается термин Когерентные источники : [c.75]    [c.80]    [c.80]    [c.83]    [c.84]    [c.84]    [c.84]    [c.198]    [c.462]    [c.81]    [c.89]    [c.191]    [c.239]    [c.95]    [c.128]    [c.393]   
Физические основы механики (1971) -- [ c.712 ]

Волны (0) -- [ c.405 , c.406 ]



ПОИСК



Влияние когерентных свойств записывающего источника излучения иа голограмму

Влияние размеров источника на интерференцию. Пространственная когерентность

Влияние размеров источника света. Пространственная когерентность

Вопросы когерентности в случае протяженных источников

Вычисление степени частйчной когерентности для ух точек, освещаемых одним источником

Два источника звука с частично-когерентными или некогерентныын сигналами

Два источника когерентных сигналов

Значение размеров источника света. Пространствеая когерентность

Излучение электромагнитных волн совокупностью когерентных источников . 223. Поглощение и усиление излучения, распространяющегося в среде . 224. Эффект насыщения

Интерференция между двумя точечными когерентными источниками

Интерференция света от протяженного источника Пространственная когерентность

Источники волн когерентные

Источники излучения когерентный

Источники шумов в когерентных оптических системах

Когерентная (-ое)

Когерентность

Когерентность в изображении протяженного источника

Когерентность в случае протяженных источнико

Когерентность и источники света

Когерентность между колебаниями, излучаемыми одним источником в двух различных направлениях освещение интерферометров

Площадь когерентности источника

Пространственная и временная когерентность источника

Спектр большого числа когерентных точечных источников

Спектр большого числа когерентных точечных источников, образующих идентичные, одинаково ориентированные н хаотически расположенные пары

Средняя когерентность двух лазерных источников света

Степень когерентности между двумя точками, освещаемыми удаленным монохроматическим источником

Тепловые источники света когерентность более высокого порядка

Угловая расходимость когерентного источника

Условие когерентности для протяженного источника

Частичная когерентность света от протяженного некогерентного источника



© 2025 Mash-xxl.info Реклама на сайте