Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Структура и свойства сварных соединений металлов и сплавов

СТРУКТУРА И СВОЙСТВА СВАРНЫХ СОЕДИНЕНИЙ МЕТАЛЛОВ И СПЛАВОВ  [c.11]

Структура и свойства сварного соединения. Металл шва сварного соединения алюминия, так же как и стали, имеет столбчатое строение (рис. 11-1). Однако поперечные размеры кристаллитов намного больше. В околошовной зоне в процессе сварки происходит рекристаллизация металла преимуш,ественно в направлении проката. Рекристаллизация сопровождается некоторым снижением твердости (рис. 11-2). Кроме основы — твердого раствора алюминия, содержатся отдельные интерметаллические соединения алюминия с железом и кремнием. При сварке алюминиевомагниевых сплавов обнаруживаются соединения алюминия с марганцем и магнием, а также фазы более сложного состава, содержащие примеси железа и кремния (рис. 11-3).  [c.640]


Газовая сварка деталей из алюминиевых сплавов характеризуется большим тепловым воздействием пламени на свариваемый металл, что может приводить к изменению структуры и свойств сварных соединений. При сварке деталей из алюминиевых сплавов очень важно правильно выбрать мощность горелки и диаметр присадочного материала. Связь между этими параметрами характеризуется данными, которые приводятся в табл. 27.  [c.195]

Путем термообработки можно в широких пределах изменять физические и механические свойства большей части промышленных сплавов. Возможность изменения свойств сплавов путем термообработки, их свариваемость, структура и свойства сварных соединений и, что очень важно, возможность получения надежного соединения при сварке сплавов на основе разных металлов определяются природой сплавов, их строением, фазовым состоянием и составом, изменениями, происходящими при нагреве и охлаждении как в процессе термообработки, так и в процессе сварки.  [c.39]

Основные проблемы повышения конструктивной прочности сварных изделий из перлитных и мартенситных сталей и а- и а+р-сплавов титана связаны с высокой склонностью этих материалов к образованию холодных трещин при сварке и задержанному разрушению, а также с понижением пластичности и прочности соединений в сравнении с основным металлом. В ряде случаев известные методы упрочнения за счет легирования и термической обработки не позволяют удовлетворительно решать эту проблему без специальных методов регулирования структуры и свойств сварных соединений в процессе сварки. Указанные стали и сплавы титана обладают повышенной реакцией на термический цикл сварки, в результате чего в околошовной зоне, шве и других участках сварных соединений происходят неблагоприятные изменения структуры и свойств. К основным явлениям, лимитирующим повышение конструктивной прочности сварных изделий из этих материалов, следует отнести развитие химической и физической неоднородности в сварных швах (внутрикристаллическая неоднородность, полигонизация), в околошовной зоне (рост зерна, перегрев) и на границе сплавления, образование хрупких закалочных структур в шве и околошовной зоне, разупрочнение основного металла в участках высокого отпуска или рекристаллизации обработки и т. д.  [c.8]


Сплавы системы магний — марганец (МЛ2, MAI) характеризуются хорошей свариваемостью. Кристаллизационные трещины в них при газовой сварке не образуются. Однако механические свойства сварных соединений из этих сплавов невысокие из-за образования крупнозернистой структуры в околошовной зоне. Прочность и пластичность металла шва у сплава MAI зна--чительно меньше, чем у деформированного основного металла.  [c.93]

При всех способах сварки титановых сплавов нельзя допускать перегрева металла. Нужно применять способы и приемы, позволяющие влиять на кристаллизацию металла электромагнитное воздействие, колебания электрода или электронного луча поперек стыка, ультразвуковое воздействие на сварочную ванну, импульсный цикл дуговой сварки и т.п. Все это позволит получать более мелкую структуру шва и высокие свойства сварных соединений.  [c.201]

Прибор для оценки структуры металлов и сплавов, сварных соединений нержавеющих сталей, для оценки твердости, пористости и других физико-механических свойств различных материалов  [c.386]

Ввиду различия химического состава и структуры металла шва и основного металла сварные соединения некоторых никелевых сплавов особенно с Сг и Мо имеют существенную неоднородность физикохимических свойств и проявляют склонность к межкристаллитной коррозии. Для таких сплавов рекомендована послесварочная термическая обработка (нагрев до Т = 700. .. 800 °С с последующим охлаждением на воздухе или в воде).  [c.464]

Точность определения функциональных зависимостей при испытании сплавов переменного состава. Известно, что многими ТУ и ГОСТ, например, ГОСТ 6996—66 на методы определения механических свойств сварных соединений, предусматривается проводить оценку свойств металла по результатам испытания двухтрех одинаковых по составу и структуре (параллельных) образцов. Такие образцы можно вырезать из металла ПС, изготовлен-  [c.46]

В НПО ЦНИИТмаш А. В. Сурковым, С. И. Евсеевым и Н. П. Аносовым экспериментально исследована возможность изготовления крупномасштабных образцов, имитирующих по составу и структуре зону сплавления сварных соединений. Показана возможность более детального изучения структуры и свойств металла в зоне сплавления на специальных образцах из сплавов переменного состава.  [c.71]

Наиболее существенные изменения структуры и свойств основного металла при сварке происходят в сплавах с полиморфным превращением (второй и третий виды), а в металле щва — также и при кристаллизации. При сварке сплавов без полиморфного превращения структура и свойства сварных соединений определяются в основном превращениями первого н четвертого видов. Значительную и, как правило, отрицательную роль во всех случаях играют процессы развития неоднородностей, физической (рост зерна, огрубление тонкой структуры) и химической (макро- и микроскопическая ликвация в металле шва, сегрегация легирующих элементов и примесей в металле зоны термического влияния, диффузионное перераспределение их между разнородными фазами при частичном расплавлении или в твердом состоянии в температурном интервале неполного превращения и т. д.) [2]. При сварке плавлением эти процессы вследствие высокотемпературного нагрева получают значительно большее развитие, чем при сварке давлением в твердой фазе.  [c.11]

Под технологической свариваемостью понимается возможность получения сварного соединения, определяемого видом сварки. При различных видах сварки происходит окисление компонентов сплавов. В стали, например, выгорает углерод, кремний, марганец, окисляется железо. В связи с этим в определение технологической свариваемости входит определение химического состава, структуры и свойств металла шва в зависимости от вида сварки, оценка структуры и механических свойств около-  [c.223]

Проблемы, связанные с тепловым воздействием на металл при сварке алюминия и его сплавов. Изменение структуры и свойств металла в зоне термического влияния. При сварке технического алюминия, а также сплавов типа АМц и АМг, не подвергающихся упрочнению термической обработкой, существенных изменений в зоне термического влияния не наблюдается. Если сваривается нагартованный металл, то вследствие процесса рекристаллизации в зоне термического влияния может иметь место некоторое снижение его твердости. Прочность такого сварного соединения также снижается — на 10—20% по сравнению с прочностью основного металла (сплавы АМц и АМг).  [c.385]


Большое влияние на свариваемость металлов и сплавов оказывает их химический состав. Это особенно наглядно видно на примере железоуглеродистых сплавов. Свариваемость углеродистой стали изменяется в зависимости от содержания основных примесей. Углерод является наиболее важным элементом в составе стали, определяющим почти все основные свойства стали в процессе обработки, в том числе и свариваемость. Низкоуглеродистые стали (С<0,25%) свариваются хорошо. Среднеуглеродистые стали (С <0,35%) также свариваются хорошо. Стали с содержанием С>0,35% свариваются хуже. С увеличением содержания углерода в стали свариваемость ухудшается. В околошовных зонах появляются закалочные структуры и трещины, а шов получается пористым. Поэтому для получения качественного сварного соединения возникает необходимость применять различные технологические приемы. Марганец не затрудняет сварку стали при содержании его 0,3...0,8%. Однако при повышенном содержании марганца (1,8...2,5%) прочность, твердость и закаливаемость стали возрастают, и это спо-  [c.38]

Учебник охватывает все основные разделы курса. В нем рассматриваются вопросы общей теории сваривания, основы физической химии, сварочные источники тепла, а также некоторые вопросы тепловых и металлургических процессов при сварке, формирования структуры и свойств- металла сварных соединений, возникновения и развития сварочных деформаций и напряжений, технологической свариваемости металлов и сплавов.  [c.3]

Цветные металлы и сплавы, применяющиеся для различных сварных конструкций, обладают разнообразными свойствами. Поэтому структура и свойства металла швов и зон термического влияния их сварных соединений также весьма разнообразны.  [c.357]

Какое влияние оказывает сварка на структуру и свойства металла в сварных соединениях алюминия и алюминиевых сплавов  [c.381]

Наиболее существенные изменения структуры и свойств основного металла при сварке происходят в сплавах с полиморфным превращением (второй и третий виды), а в металле шва—также и при кристаллизации. При сварке сплавов без полиморфного превращения (стабильные р-сплавы) структура и свойства сварных соединений определяются в основном превращениями первого и четвертого видов. Значительную и, как правило, отрицательную  [c.9]

Для оценки свариваемости проводят ряд испытаний, выбор которых обусловлен назначением сварной конструкции и теми изменениями в структуре и свойствах, которые происходят в материале под влиянием сварки. Так, при сварке сплавов с широким интервалом кристаллизации под действием возникающих при затвердевании растягивающих напряжений возможно образование кристаллизационных горячих трещин, являющихся весьма серьезным дефектом. Стойкость металла сварных соединений против кристаллизационных трещин — один из важнейших показателей свариваемости.  [c.84]

Основной металл — металл, подвергающихся сварке деталей. Зона термического влияния — участок основного металла, не подвергшийся расплавлению, структура и свойства которого изменились в результате нагрева и пластической деформации при сварке. Зона сплавления — металл, находящийся на границе основного металла и шва. Металл шва — сплав, образованный переплавленным основным и наплавленным металлом. Поверхность сварного соединения, выполненного покрытым электродом, покрыта слоем затвердевшего шлака, состоящего из выделений покрытия электрода и всплывших на поверхность загрязнений металла.  [c.145]

Монография состоит из семи глав. В гл. I рассмотрены основные положения теории фазовых превращений в металлах и сплавах в твердом состоянии, а также закономерности превращений железа, титана и их сплавов в изотермических условиях. В гл. II показаны условия их протекания в зоне термического влияния при сварке плавлением. В гл. III описаны новые методы и аппаратура для изучения кинетики фазовых превращений и изменений структуры и свойств металлов в неравновесных условиях при сварке и термомеханической обработке, а также для исследования задержанного разрушения и образования холодных трещин. В гл. IV приведены результаты исследования превращений при непрерывном нагреве, кинетики роста зерна и гомогенизации аустенита и Р-фазы сплавов титана при сварке. В гл. V рассмотрены основные закономерности фазовых превращений в условиях непрерывного охлаждения при сварке. В гл. VI изложен механизм задержанного разрушения сталей и сплавов титана, установлены критерии оценки этого явления и показано влияние легирующих элементов, параметров термического цикла и жесткости сварных соединений на" сопротивляемость этих материалов образованию холодных трещин при сварке. В гл. VII приведены характеристики свариваемости сталей и сплавов титана различных структурных классов и систем легирования, сформулированы критерии выбора технологии и режимов их сварки и показаны пути регулирования структуры и свойств сварных соединений как в процессе сварки, так и при последующей термической, термомеханической или механико-термической обработке.  [c.10]

Сварка алюминия и его сплавов с медью. Соединение этих металлов вызывает трудности из-за наличия на поверхности алюминиевых сплавов трудноудаляемых окисных пленок и образования в зоне соединения хрупких интерметаллидных прослоек и окисных включений. Прочность сварных соединений алюминия и меди определяется свойствами переходной зоны, имеющей различный фазовый состав, структуру и толщину и зависящей от температурно-временных условий.  [c.140]


Влияние температуры сварки на механические свойства соединений двухфазного сплава мартенситного типа 0Т4 (3] показано на рис. 2. Давление сжатия составляло 0,98 МПа, время сварки — 60 мин. При исходной мелкозернистой равноосной структуре сплава температура 1173 К обеспечивает прочность соединений на уровне основного металла, однако образцы разрушаются хрупко в зоне сварки. При повышении температуры до 1198—1223 К прочность на разрыв практически не изменяется, но разрушение образцов при испытании происходит по основному металлу. Ударная вязкость резко возрастает. При температуре 1223 К достаточно время сварки 30 мин. Дальнейшее повышение температуры приводит к ухудшению качества соединения разрушение образцов становится хрупким из-за крупнозернистой структуры, показывая низкую ударную вязкость. Влияние давления сжатия на механические свойства сварных соединений сплава ОТ4 показано на рис. 3. Результаты показывают, что давление является весьма эффективным фактором повышения механических свойств соединений. Сварные соединения, полученные при температуре 1073—1123 К и давлении 3,9—5,9 МПа, имеют предел прочности на разрыв, соответствующий прочности основного металла, но низкую ударную вязкость. Увеличение давления до 9,8 МПа не приводит к повышению ударной вязкости до уровня основного металла. Здесь наблюдается полная аналогия с результатами сварки сплава ВТ5-1. Высокие прочностные характеристики сварных соединений сплава 0Т4 обеспечивает температура 1173 и 1223 К при давлениях соответственно 4,9 и 1,9 МПа и времени сварки 30 мин. Деформация образцов при этом составляет 6—8%. При увеличении давления сварки до 1,9—2,9 МПа время сварки сокращается до 5 мин и деформация образцов составляет примерно 4%. При снижении температуры сварки для получения качественных соединений требуется большая степень деформации.  [c.152]

Во многих случаях, в особенности при сварке легированных сталей и различных сплавов, требуется прежде всего получение определенных механических свойств и структуры металла около-шовной зоны и шва, которые зависят от длительности пребывания металла выше определенной температуры, скорости охлаждения в необходимом интервале температур, повторного нагрева и многих других особенностей термического цикла сварки (см. разд. IV). Поэтому оценка эффективности процесса сварки по энергетическим критериям часто оказывается второстепенной. Однако для сталей, мало чувствительных к воздействию термического цикла сварки, оценка эффективности различных режимов сварки по энергетическим затратам необходима. Следует различать сварные соединения двух основных крайних типов соединения, в которых преобладает наплавленный металл (заштрихованные участки на рис. 7.20, вверху), и соединения, образуемые преимущественно в результате расплавления основного металла (рис. 7.20, внизу). Для последнего типа соединений, например стыкового, тепловую эффективность процесса целесообразно характеризовать удельной затратой количества теплоты на единицу площади свариваемой поверхности  [c.232]

Пайкой называют соединение металлических или металлизированных деталей с помощью припоя (расплавленного металла или сплава), температура плавления которого ниже температуры плавления материала соединяемых деталей. В отличие от сварки пайка сохраняет неизменными структуру, механические свойства и химический состав основного материала. Пайка вызывает значительно меньшие остаточные напряжения. В процессе пайки между соединяемыми поверхностями деталей вводится расплавленный припой, который после остывания образует шов, менее прочный, чем сварной. Качественный паяный шов можно получить только при чистых поверхностях спаиваемых деталей. Для защиты поверхности от окисления применяют флюсы, которые, защищая поверхности от окисления, повышают текучесть припоя.  [c.371]

Механические свойства сталей и сплавов определяются их химическим составом, структурой и отсутствием или наличием различного типа дефектов. Вьппе бьши рассмотрены основные типы и виды дефектов, характерные для сварных соединений. В настоящем разделе остановимся на рассмотрении ряда особенностей, связанных с неоднородностью химического состава и структуры сварных соединений, которые определяют механические характеристики металла шва, зоны термического влияния, зоны сплавления и других локальных участков. При этом необходимо иметь в виду, что развитие дефектов происходит именно в данных участках, а работоспособность сварных соединений определяется комплексом сложных процессов, связанных с механическими характеристиками металла различных зон, геометрическими размерами последних, видом и условиями нагружения, типом дефекта и др.  [c.13]

Помимо сложности получения на аустенитных высоколегированных сталях и сплавах швов без горячих трещин имеются и другие трудности, обусловленные спецификой их использования. К сварным соединениям на жаропрочных сталях предъявляется требование сохранения в течение длительного времени высоких механических свойств при повышенных температурах. Большие скорости охлаждения металла шва при сварке приводят к фиксации неравновесных по отношению к рабочим температурам структур. Во время эксплуатации при температурах выше 350 °С в результате диффузионных процессов в стали появляются новые структурные составляющие, приводящие обычно к снижению пластических свойств металла шва.  [c.355]

При дуговой сварке механические свойства металла сварного шва и прочность соединения в целом зависят от марки титана, марки присадочной проволоки, способов и режимов сварки и могут быть доведены до показателей основного металла. Титановые а-, псевдо-а- и р-сплавы хорошо свариваются, малочувствительны к изменению термических циклов сварки и могут свариваться в широком диапазоне режимов. Сварные соединения из низколегированных а-сплавов почти равнопрочны основному металлу. С повышением легирования различие в прочности и пластичности сварного соединения и основного металла возрастает. Для стабилизации структуры и снятия остаточных напряжений применяют для а-сплавов послесварочный отжиг.  [c.476]

Высоколегированные стали и сплавы составляют значительную группу конструкционных материалов. К числу основных трудностей, которые возникают при сварке указанных материалов, относится обеспечение стойкости металла шва и околошовной зоны против образования трещин, коррозионной стойкости сварных соединений, получение и сохранение в процессе эксплуатации требуемых свойств сварного соединения, получение плотных швов. При сварке высоколегированных сталей могут возникать горячие и холодные трещины в шве и околошовной зоне. С кристаллизационными трещинами борются путем создания в металле шва двухфазной структуры, ограничения в нем содержания вредных примесей и легирования вольфрамом, молибденом и марганцем, применения фтористо-кальциевых электродных покрытий и фторидных сварочных флюсов, использования различных технологических приемов. Присутствие бора может привести к образованию холодных трещин в швах и околошовной зоне. Предотвращение их появления достигается предварительным и сопутствующим подогревом сварного соединения свыше 250 — 300 °С. С помощью технологических приемов можно также предотвратить кристаллизационные трещины. В ряде случаев это достигается увеличением коэффициента формы шва, увеличением зазора до 1,5 — 2 мм при сварке тавровых соединений. Предварительный и сопутствующий подогрев не оказывает заметного влияния на стойкость против образования кристаллизационных трещин. Большое влияние оказывает режим сварки. Применение электродной проволоки диаметром 1,2 — 2 мм на умеренных режимах при минимально возможных значениях погонной энергии создает условия для предотвращения появления трещин. Предпочтение следует отдавать сварочным материалам повышенной чистоты. При сварке аустенитных сталей проплавление основного металла должно быть минимальным. Горячие трещины образуются  [c.110]


Влияние процесса сварки на структуру и свойства сплавов титана зависит от типа сплава (а- или a+ -сплавы), а также вида и количества а- и -стабилизирующих элементов. Нами было показано, что механические свойства сварных соединений а-сплавов близки к свойствам основного металла. Сварные соединения a+ -сплавов имеют пониженную пластичность по сравнению с основным металлом, причем особенно резко она схгижается с увеличением количества -стабилизирующих элементов свыше определенного предела. Влияние легирующих элементов на свойства сварных соединений сплавов титана изучалось многими зарубежными и советскими исследователями. Подробный анализ большинства этих работ, а такн е ряда исследований автора был приведен в обзоре [164] и монографии [72].  [c.281]

Структура и свойства сварных соединений этих сплавов целиком определяются процессом сварки. Поэтому основным критерием выбора режимов и технологии сварки является интервал скоростей охлаждения в котором степень снижения уровня пластических свойств и ударной вязкости околошовной зоны и шва в сравнении с основным металлом оказывается наименьшей. Если сплавы применяются в деформированном состоянии и после сварки отжигу не подвергаются, то в связи с опасностью резкого разупрочнения дополнительным критерием служит длительность пребывания основного металла выше температуры рекристаллизации обработки в участке зоны термического влияния, нагреваемом до температуры начала a -превращения (см. рис. 10). При невысоком содержании А1 (до 4—4,5%) и -стабилизаторов не выше предела растворимости в а-фазе эти сплавы имеют достаточно широкий интервал Наиболее высокими характеристиками пластичности сварные соединения этих сплавов обладают при средних или относительно высоких скоростях охлаждения, соответствующих режимам аргонодуговой сварки металла средней или малой толщины. При мягких режимах пластичность снижается вследствие роста зерна и перегрева металла в околошовной зоне, а при весьма жестких режимах — за счет образования болое резких закалочных а -структур. Уровень пластргаеских свойств сварных соединений этих сплавов и ширина существенно зависит от содержания газов, алюминия, тина и количества -стабилизаторов. Особенно резко пластичность надает нри высоком содержании алюминия (ОТ4-2, АТ6, АТ8).  [c.277]

Структура и свойства сварных соединений этих сплавов целиком определяются процессом сварки. Поэтому основным критерием выбора режимов и технологии сварки является оптимальный интервал скоростей охлаждения Дшопт, в котором степень понижения уровня пластических свойств и ударной вязкости околошовной зоны и шва в сравнении с основным металлом оказывается наименьшей. Если сплавы применяются в деформированном состоянии и после сварки отжигу не подвергаются, то в связи с опасностью резкого разупрочнения дополнительным критерием служит длительность (/р) пребывания основного металла выше температуры рекристаллизации обработки в участке зоны термического влияния, нагреваемом до температуры начала а -> р превращения. При невысоком содержании А1 (до 4—4,5%) и Р-стабилизаторов (не выше предела растворимости в а-фазе) сплавы рассматриваемой группы имеют достаточно широкий интервал Ашопт-  [c.68]

ТИТАНОВЫЕ СПЛАВЫ ДЕФОРМИРУЕМЫЕ СВАРИВАЕМЫЕ — сплавы, хорошо сваривающиеся аргоподуговой н др. видами сварки, причем прочность и пластичность сварного соединения близки к этим свойствам осиовного металла. Термич. обработка после сварки, как правило, не требуется, производится лишь отжиг для снятия нанряжений, возникших в процессе сварки. К Т. с д. с. относятся сплавы ВТ1-00, ВТ1-0, ВТ1-1, ВТ1-2, 0Т4-1, 0Т4, ВТ4, ВТ5, ВТ5-1, ВТ6С, ВТ6, ОТ4-2, АТ-3, ЛТ-4. Это однофазные сплавы на основе а-структуры (ВТ1-00, ВТ1-0, ВТ1-1,  [c.330]

В участке частичной перекристаллизации 2 на рис. 1,а) основной металл нагревается выше температуры Гн. ф. п, которая для стали соответствует началу превращения перлита в аусте-нит (критическая точка Ас ), а для большинства сплавов титана— началу а->-р-нревращения. Обычно структурные изменения в этом участке по сравнению с околошовной зоной в меньшей степени оказывают отрицательное влияние на свойства сварных соединений. Однако при определенных исходной структуре, и также условиях нагрева и охлаждения при сварке в этом участке возможно разупрочнение основного металла, обусловленное либо характером новых фаз, образующихся при последующем охлаждении, либо процессами в старых фазах при нагреве.  [c.13]

Свариваемость матерналов в основном определяется типом и свойством структуры, возникающей в сварном соединении при сварке. Прп сварке однородных металлов и сплавов в месте соединения, как правило, образуется структура, идентичная или близкая структуре соединяемых заготовок. Этому случаю соответствует хорошая свариваемость материалов. При сварке разнородных материалов в зависимости от различия их физико-химических свойств в месте соединения образуется твердый раствор с решеткой одного из материалов либо химическое или интер-металлпдное соединение с решеткой, резко отличающейся от решеток исходных материалов. Механические и физические свойства твердых растворов, особенно химических или интерметаллидных соединений, например твердость, пластичность, электропроводность и другие свойства, могут значительно отличаться от свойств соединяемых материалов. Различие свойств также вызывается образованием закалочных структур в зопе сварного соединения однородных и разнородных материалов вследствие локального высокотемпературного сварочного нагрева и быстрого охлаждения. Наличие хрупких и твердых структур в сварном соединении в условиях действия сварочных напряжений может привести к возникновению трещин в шве или околошовной зоне. В последнем случае материалы относятся к категории удовлетворительно или плохо сваривающихся.  [c.269]

В описанных выще экспериментах было изучено влияние водорода на структуру и свойства титана и а-сплавов после отжига по режимам, близким к применяемым в промышленности. После такого отжига структура металла представлена более или менее равноосными зернами а-матрпцы. Для практических целей важно также знать, каким образом влияет водород на свойства материала с пластинчатой или игольчатой структурой. Последние структуры могут возникать при перегреве металла и непременно наблюдаются в околошовной зоне и металле шва сварных соединений.  [c.394]

Различные условия кристаллизации сварочной ванны приводят также к структурной неоднородности отдельных зон сварных соединений /5/, то есть к появлению прослоек, отличающихся своей структурой. Связь между структурой химически однородных сталей и сплавов и их механическими свойствами устанавливается в металловедческих исследованиях. В некоторой степени это может быть перенесено и на сварные соединения, например, для способов сварки без присадочного металла (контактная стьшовая, точечная, шовная и другие способы сварки давлением, когда соединение поверхностей производится с образованием или литого ядра из основного металла, или за счет плавления и деформации торцев). Однако в большинстве случаев для сварных соединений приходится учитывать совместное влияние химической и структурной неоднородности.  [c.14]

Свариваемость материалов в основном определяется типом и свойствами структуры, возникающей в сварном соединении при сварке. При сварке однородных металлов и сплавов в месте соединения, как правило, образуется структура, идентич--ная или близкая структуре соединяемых заготовок. Прочность соединения определяется внутрикристаллическими связями, и свариваемость оценивается как хорошая или удовлетворительная.  [c.221]

В книге рассмотрены строение и кристаллизация металлов и их сплавов, современные методы исследования структуры и свойств металлов, влияние технологических процессов и условий эксплуатации на структуру и свойства металлов и сплавов, основы термической обработки, специальные стали и цветные металлы и сплавы. Большое внимание уделено вопросам длительной прочности и эксплуатационной надежности материалов энергетическопо оборудования и сварным соединениям.  [c.2]

Расчет предельного содержания регулируемых элементов в металле шва. В задании на изготовление металла шва ПДС обычно указывается базовый состав (содержание неизмеияющихся элементов) сплава, минимальное Сщщ и максимальное Стах содержание в нем РЭ, минимальные размеры шва. Из размеров шва указываются его плошадь поперечного сечения тш, высота или глубина проплавления основного металла йт1п, ширина Ьты, протяженность участков с дискретным (/ тш, зтш) и переменным ( тш) составом металла. Размеры шва устанавливают исходя из учета изготовления из него образцов требуемого размера и числа, необходимых для исследования структуры и свойств металла шва, а иногда и сварного соединения.  [c.26]



Смотреть страницы где упоминается термин Структура и свойства сварных соединений металлов и сплавов : [c.22]    [c.12]    [c.300]    [c.69]    [c.39]    [c.288]    [c.160]    [c.138]   
Смотреть главы в:

Испытание металлов на свариваемость  -> Структура и свойства сварных соединений металлов и сплавов



ПОИСК



Металлов Свойства

Металлы и сплавы Металлы

Свойства металлов сплавов

Свойства с а-структурой

Свойства сварных соединений

Соединения Свойства

Сплавы металлов

Структура и свойства металла сварного шва

Структура и свойства металлов

Структура и свойства сварных соединений

Структура и свойства сплавов

Структура металлов и сплавов

Структура сварных соединений



© 2025 Mash-xxl.info Реклама на сайте