Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Нержавеющие сварных соединений

Применение конструкционных низколегированных сталей повышенной и высокой прочности, теплоустойчивых и жаропрочных хромомолибденованадиевых, нержавеющих хромоникелевых сталей, биметаллов и композиционных материалов для изготовления аппаратов актуализирует проблему механической неоднородности. Механическая неоднородность, заключающаяся в различии механических характеристик зон (шва Ш, зоны термического влияния ЗТВ и основного металла) сварного соединения, является, с одной стороны, следствием локализованных температурных полей при сварке структурно-неравновесных сталей, с другой - применения технологии сварки отличающимися по свойствам сварочных материалов с целью повышения технологической прочности.  [c.93]


Важной задачей является правильный выбор способа сварки в соответствии с назначением, формой и размерами конструкций. Назначение способа сварки в значительной степени определяется свариваемостью, особенно при соединении разнородных материалов, конструктивным оформлением сварных соединений, степенью их ответственности и производительностью процесса. Необходимо также учитывать тип соединений, присадочный материал, приемы и обеспечение удобства выполнения сборочно-сварочных соединений. Эти условия предопределяют механические свойства соединений и допускаемые напряжения, необходимые для прочностных расчетов конструкций. Так, для сварки длинных швов встык более технологично применение дуговой автоматической сварки. Толстостенные элементы соединяют электрошлаковой сваркой. Для сварки внахлест тонколистовых материалов рационально применение контактной сварки. Некоторые виды свариваемых материалов (алюминиевые и титановые сплавы, нержавеющие стали и т. п.) требуют надежной защиты зоны сварки от окисления, т. е. применения аргонно-дуговой, электронно-лучевой и диффузионной сварки. Необходимо также учитывать возможности механизации и автоматизации процесса выбранного способа сварки.  [c.164]

ИССЛЕДОВАНИЕ СВАРНЫХ СОЕДИНЕНИЙ АУСТЕНИТНЫХ НЕРЖАВЕЮЩИХ СТАЛЕЙ КРИОГЕННОГО НАЗНАЧЕНИЯ  [c.235]

Рис. 3. Скорость роста трещины усталости в основном металле и сварных соединениях исследованных нержавеющих сталей при температуре 4 К ("V = 10 Гц) Рис. 3. <a href="/info/34435">Скорость роста трещины</a> усталости в <a href="/info/384895">основном металле</a> и <a href="/info/2408">сварных соединениях</a> исследованных <a href="/info/51125">нержавеющих сталей</a> при температуре 4 К ("V = 10 Гц)
Механические свойства (ао,2 , ств о ) различных сварных соединений четырех нержавеющих сталей соответствуют требованиям и значительно возрастают при снижении температуры аналогично поведению соответствующего основного материала.  [c.249]

В морской воде коррозионная стойкость нержавеющих сталей определяется не только составом легирующих добавок, но и их структурой [8]. В частности, мартенситные стали, содержащие 12—18 % Сг, в морской воде подвержены заметной коррозии, сопровождающейся коррозионным растрескиванием за счет разрушения карбидной фазы. Удовлетворительная коррозионная стойкость ферритных сталей нивелируется затруднениями, связанными с их сваркой, и усиленной коррозией их сварных соединений. Наилучшие антикоррозионные свойства отличают аусте-нитные стали, хотя их механические свойства хуже, чем у мартен-ситных и ферритных сталей. Оптимальное сочетание коррозионной стойкости с механиче-  [c.27]


Стали этого типа получили широкое применение в различных отраслях промышленности в качестве нержавеющего, коррозионностойкого и окалиностойкого материала. Сочетая умеренную прочность, высокую пластичность, немагнитность, повышенные механические свойства при высоких температурах, имея хорошую свариваемость, высокие прочность и пластичность в сварных соединениях, они в ряде отраслей промышленности являются основным, весьма ценным конструкционным материалом,  [c.22]

Сварные соединения из сталей нержавеющих — Прочность 208 — Типы и параметры 59  [c.438]

Если сварные соединения конструкционной стали подвергнуть двустороннему плакированию нержавеющей аустенитной сталью с помощью энер-  [c.14]

ГИИ взрыва, то полученные конструктивные элементы будут обладать следующими преимуществами создаваемый при плакировании взрывом наклеп способствует значительной разгрузке сварного соединения от возникающих при сварке плавлением нежелательных растягивающих напряжений наличие нержавеющих слоев повышает также коррозионную стойкость соединения. Кроме того, вязкие наружные слои обеспечивают подкрепляющий эффект и в случае развития трещин в сварном шве будут способствовать их торможению и остановке, сохраняя герметичность соединения даже при длинах трещин, равных толщине основного металла.  [c.16]

Скорость коррозии аустенитных нержавеющих сталей при температуре 500 и 715° С ниже, чем скорость ее у хромистых сталей, особенно при значительном содержании кислорода. При содержании 0,5% кислорода скорость коррозии уменьшается по сравнению с хромистыми сталями в 10 раз. Аустенитная нержавеющая сталь и ее сварные соединения при содержании 0,005% кислорода сохраняют стойкость до температуры 700° С. При наличии переменных  [c.48]

В зависимости от вида соединения, способа сварки и толщины свариваемых элементов применяют различные типы швов сварных соединений в соответствии с ГОСТ 8713—58 и ГОСТ 5264—58. В табл. 13 приведены основные виды швов сварных соединений конструкций из нержавеющих аустенитных сталей.  [c.147]

Основные виды швов сварных соединений из нержавеющих аустенитных сталей  [c.148]

Марки стали, сварочные материалы и режимы термической обработки сварных соединений перлитных сталей с нержавеющими  [c.152]

Кроме пооперационного контроля, для сварных соединений и конструкций из нержавеющих сталей применяют следующие виды контроля  [c.159]

Выбор сварочных материалов и свойства сварных соединений хромистых нержавеющих и жаропрочных сталей  [c.33]

Одно из испытаний на термическую усталость сварной конструкции больших размеров, выполненной из отрезков труб диаметром 305 мм и толщиной стенки около 60 мм из нержавеющих хромоникелевых аустенитных сталей и перлитной хромомолибденовой теплоустойчивой стали с однородными и разнородными сварными соединениями, проводилось следующим образом.  [c.28]

Термическая обработка сварных соединений из нержавеющих сталей  [c.502]

Механохимическая неоднородность свойственна практи" чески всем сварным соединениям, даже при сварке углеродистых сталей (СтЗсп) с благоприятной реакцией к термическо му циклу сварки (рис. 2.6, а). Наиболее ярко выраженной ме-ханохимической неоднородностью обладают легированные стали со специальными свойствами нержавеющие (рис. 2.6,  [c.94]

Исследование межкристаллиткой коррозии. Существуют испытания, на основании которых можно определять склонность сплавов к межкристаллитной коррозии. Особенно часто определяют склонность к межкристаллитной коррозии нержавеющих сталей аустенитного, аустенитно-мартенситною и аустенит-но-ферритного классов. Методы испытаний проката, поковок, труб, проволоки, литья, сварных соединений, изготовленных из сталей этих классов, а также двухслойных сталей и биметаллических труб с плакирующим или основным слоем из этих сталей предусмотрены ГОСТ 6032—75.  [c.90]


Создание новых конструкций автоматов для дуговой сварки под флюсом обеспечило повышенное качество сварных соединений и увеличило производительность труда. Полуавтоматы и автоматы для дуговой сварки в среде защитных газов (аргона, гелия, азота) с применением вольфрамовых э.лектро-дов позволили сваривать детали из нержавеющих и жаропрочных сталей, а также цветных металлов. Для точечной сварки сконструированы многоэлектродные аппараты, которые позволили вести сварку стенок кузовов электровозов 24 парами электродов при работе 8 сварочных трансформаторов мощностью по 240 ква каждый.  [c.104]

Столь значительный сдвиг потенциала анодного нарушения пассивного состояния (потенциала пробоя ) в сторону отрицательных значений для пришовной области ведет к особой опасности локального нарушения пассивности в тех коррозионных средах, где нержавеющая сталь при отсутствии напряжений находится в устойчивом пассивном состоянии, с образованием условий для усиленной локальной коррозии (в том числе коррозионного растрескивания) при наличии коррозионных гальванопар на поверхности сварного соединения типа активная пришовная зона — пассивная остальная поверхность.  [c.223]

Сварной материал. При комнатной температуре прочность сварных соединений исследованных сталей превышает 665 МПа. Установлена существенная разница в поведении двух типов сталей при 298 К. Так, сварные образцы никелевых сталей разрушались по основному металлу, а при низких температурах— по сварному шву, что типично для сварных соединений никелевых сталей, изготовленных с присадкой проволоки сплава In onel. В сварных соединениях нержавеющей стали, наоборот, при 298 К разрушение происходит по шву, а в интервале температур 113—77 К— по основному материалу.  [c.207]

Механические свойства сварных соединений исследованных нержавеющих сталей, выполненных дуговой сваркой вольфрамовым электродом в инертной среде и сваркой плавящимся электродом, достаточно высокие. Установлено, что пределы текучести и прочности и прочность надрезанного образца у сварных соединений значительно возрастают при снижении температуры аналогично соответствующим свойствам основного материала. Исключение из этой закономерности представляют собой сварные соединения стали Pyromet 538, выполненные сваркой плавящимся электродом, состав которого отличается от основного материала на этих образцах не обнаружено существенной разницы в прочности в интервале от 77 до 4 К. Коэффициент прочности сварного соединения (т. е. отношение пре-  [c.246]

В целом высокопрочные аустенитные нержавеющие стали обладают очень высокой стойкостью в морских атмосферах. Высокая прочность этих сплавов достигается путем холодной деформации, после чего обычно следует термообработка, частично восстанавливающая пластичность. После холодной деформации и термообработки аустенитные нержавеющие стали обладают очень хорошей стойкостью в агрессивных морских атмосферах. Однако в местах сварных соединений стойкость теряется. Наблюдается также коррозия этих сталей при высоких температурах, в частности при испытаниях в кипящем 42%-ном растворе Mg l2, а также в горячей морской воде [12]. О коррозии при комнатных температурах сообщалось очень редко. После термообработки на твердый раствор аустенитные нерл<авеющие стали не подверл<ены кор-  [c.66]

Х13Н4Г9, выпускаемую в виде холоднокатаной ленты, применяют при изготовлении легких высокопрочных конструкций, соединяемых точечной или роликовой электросваркой. Ввиду высокого содержания углерода другие методы сварки для этой стали неприменимы из-за возможности появления в сварных соединениях склонности к межкристаллитной коррозии, В состоянии после закалки сталь 2Х13Н4Г9 имеет аустенитную структуру, переходящую при холодной пластической деформации в мартенсит (-у-> aj). Это имеет большое значение, так как упрочнение достигается как путем наклепа, так и благодаря частичному мартенсит-ному превращению. В результате сталь в холоднокатаном состоянии сочетает высокую прочность с достаточно высокой пластичностью [31 ]. Изменение свойств некоторых нержавеющих хромомарганцовоникелевых сталей в зависимости от различных факторов показано на рис. 25—28 [28 и др.[.  [c.36]

Для пайки нержавеющих сталей типа 18-8 с Ti рекомендуют припой ВПр1, содержащий 27—30% Ni 1,5—2,0 Si 0,10—0,3% В g l,5% Fe, остальное медь, с температурой плавления 1080—1120 С [6]. Пайку соединений проводят при 1150— 1200° С в любых условиях нагрева (пламенем ацетилено-кислородиой и плазменной горелки, т. в. ч., в печах и соляных ваннах) с применением флюсов 200, 201 или плавленой буры. В атмосфере инертных газов и вакууме флюсы при пайке не применяют. Этот припой обеспечивает высокую прочность сварным соединениям при комнатной и высоких температурах.  [c.230]

Сварные соединения, в том числе соединения, составленные из разнородных материалов, являются основными элементами конструкций атомных энергетических реакторов типа ВВЭР. Примером тому могут служить и рассмотренные выше элементы корпуса реактора - патрубковая зона (см. рис. 5.2) и обечайка активной зоны, поперечное сечение которой приведено на рис. 5.6, соединенные между собой с другими элементами корпуса сварными швами. Корпус парогенератора ПГВ-440, изготовленный из стали перлитного класса, с приваренными к нему коллекторами из нержавеющей стали - другой пример разнородных соединений, составленных из трех различньи материалов.  [c.180]


Рис. 1. Образцы биметаллических материалов 1 — низколегированная корпусная сталь, плакированная нержавеющей аустенит-иой сталью 2 — низколегированная сталь с введешиамв нее трещиноостановителем из вязкого сплава специального состава 3 — сварное соединение конструкционной стали, плакированное нержавеющей аустенитной сталью 4 — многослойный материал из высокопрочного алюминиевого сплава с наружными плакирующими слоями и внутренними прослойками из технически чистого алюминия 5—8 — различные сочетания металлов и сплавов, при которых достигается высокий комплекс свойств жаропрочность, повышенные теплопроводность и износостойкость, малая плотность, высокая демпфирующая способность Рис. 1. Образцы биметаллических материалов 1 — низколегированная корпусная сталь, плакированная нержавеющей аустенит-иой сталью 2 — <a href="/info/58326">низколегированная сталь</a> с введешиамв нее трещиноостановителем из вязкого <a href="/info/59795">сплава специального</a> состава 3 — <a href="/info/2408">сварное соединение</a> <a href="/info/51124">конструкционной стали</a>, плакированное <a href="/info/161844">нержавеющей аустенитной сталью</a> 4 — <a href="/info/134125">многослойный материал</a> из <a href="/info/626652">высокопрочного алюминиевого сплава</a> с наружными <a href="/info/183873">плакирующими слоями</a> и внутренними прослойками из <a href="/info/543860">технически чистого алюминия</a> 5—8 — различные сочетания металлов и сплавов, при которых достигается высокий комплекс <a href="/info/537100">свойств жаропрочность</a>, повышенные теплопроводность и износостойкость, малая плотность, высокая демпфирующая способность
Различные режимы термообработки аустенизация, стабилизация, отжиг при температуре 650° С на скорость общей коррозии аустенитйых нержавеющих сталей 18-8 в воде при высокой температуре заметным образом не влияют [111,36 111,52). Сварные соединения аустенитной нержавеющей стали довольно устойчивы против общей коррозии в воде критических параметров.  [c.131]

Существенное преимущество никеля и его сплавов — иммунитет его к коррозионному растрескиванию в растворе хлоридов. Более устойчивы, чем чистый никель и его сплавы К — монель (с концентрацией 66% никеля, 30% меди, до 3,5% алюминия, 1,5% железа), X — инконель (с концентрацией 73% никеля, 15% хрома, 3,5% титана, 1,0% ниобия), G — иллий (с концентрацией 56% никеля, 22,5% хрома, 6,5% железа, 6,5% меди, 1,25% марганца, 6,4% молибдена), хлоримет 2 (63% никеля, 3% хрома, 32% молибдена). В деаэрированном паре при температуре 400° С сплавы никеля достаточно устойчивы. В паре при температуре 500° С инконель корродирует со значительной скоростью [111,247]. В воде при температуре 316° С он межкристаллитной коррозии не подвержен. При деаэрации скорость коррозии снижается. Увеличение pH воды до 9,5 приводит к снижению скорости коррозии отожженной инко-нели. Стабилизирующий отжиг лишь в малой степени уменьшает ее. Сварные соединения инконели и аустенитной нержавеющей стали стойки в деаэрированной воде при температурах до 300° С [111,248]. При температуре 650° С коррозия никелевых сплавов по преимуществу межкристаллитная. Отмечается также обезуглероживание сплавов. При температуре 680° С достаточно стоек хастелой.  [c.227]

Контроль качества сварных соединений из нержавеющих сталей осложняется невозможностью обнаружения микротрещин гамма- и рентгенографированием. Ультразвуковой контроль свар--ных соединений аустенитных сталей также недостаточно надежен, поэтому особое значение приобретает пооперационный контроль. Подлежащие сварке крод и и прилегающие участки зоны основного металла зачищают по ширине не менее чем на 20 мм, обезжиривают и подвергают осмотру. Тщательному осмотру снаружи и изнутри подвергаются корневые проходы в швах. Контроль сварки аустенитных сталей осуществляется травлением наружной поверхности швов. Крупные дефекты сварки (непровары, зашлаковка, макротрещины и т. д.) обнаруживаются гамма- и рентгенографией.  [c.159]

При испытании флюсов, предназначенных для сварки высоколегированных нержавеющих сталей типа 1Х18Н9Т (АН-26, ФЦЛ-2), производится испытание на межкристаллитную коррозию. Методика испытания та же, что и для сварных соединений.  [c.288]

Если сталь легирована элементами, обладающими большим сродством к кислороду, чем железо, эти элементы предохраняют железо, являющееся основой стали, от окисления. Такими элементами является хром, алюминий и некоторые другие металлы. Пленка этих окислов обладает защитными свойствами и обеспечивает жаростойкость стали в том случае, если плотно покрывает всю поверхность детали и прочно соединена с основным металлом детали [80, 143, 158]. Коэффициент линейного расширения пленки должен быть близок к коэффициенту линейного расширения той стали, из которой изготовлена деталь. Наилучшую по свойствам пленку дают окислы хрома. В качестве добавки в нержавеющие стали вводятся титан и ниобий, препятствующие обеднению хромом границ зерен и тем самым появлению у нержавеющей стали склонности к интеркристаллитной коррозии. Так, например, широко распространенная нержавеющая аустенит-ная сталь 1Х18Н9Т до введения в ее состав титана была подвергнута интеркристаллитной коррозии, особенно в сварных соединениях.  [c.25]

При использовании в конструкциях нелегированного титана необходимо учитывать, что различные уровни его прочности достигаются за счет суммарного увеличения содержания примесных элементов, из которых одни существенно повышают прочность и снижают пластичность и вязкость, в то время как другие мало упрочняют, но значительно охрупчивают титан. Поэтому рост прочности за счет суммарного увеличения содержания примесей, как правило, сопровождается значительно большей нестабильностью механических свойств. В связи с этим применение нелегированного титана в машиностроении должно определяться соотношением требований конструктивной прочности и стоимости. Если требования по конструктивной прочности невысоки, экономически целесообразно применение низкосортного титана. При высоком уровне эксплуатационных нагрузок, наличии концентраторов напряжений и большого объема сварных соединений в конструкциях целесообразно применение высокосортных марок титана. Следует отметить, что титан с пониженным содержанием примесей, в частности титан марок ВТ1-0, ВТ1-00, по прочности, пластичности и вязкости не уступает целому ряду углеродистых и нержавеющих сталей, бронз, медноникелевых сплавов и может с успехом использоваться в эксплуатационных условиях, где применяются указанные материалы.  [c.49]


Смотреть страницы где упоминается термин Нержавеющие сварных соединений : [c.280]    [c.215]    [c.15]    [c.41]    [c.220]    [c.236]    [c.319]    [c.181]    [c.104]    [c.84]    [c.31]    [c.144]   
Морская коррозия (1983) -- [ c.348 , c.351 ]



ПОИСК



504—505 ( ЭЛЛ) нержавеющие

Коррозия сварных соединений нержавеющих сталей

Межкристаллитная коррозия хромоникелевых нержавеющих стаКоррозионная стойкость сварных соединений хромоникелевой стали

Нержавеющие Сварные соединения — Прочност

Общие рекомендации по выбору материалов и повышению работоспособности сварных соединений перлитных сталей с нержавеющими

Сварные соединения из сталей нержавеющих — Прочность 208 — Типы

Сварные соединения из сталей нержавеющих — Прочность 208 — Типы и параметры

Сварные соединения из сталей нержавеющих — Прочность 208 — Типы класса—Прочность

Сварные соединения из сталей нержавеющих — Прочность 208 — Типы литейных — Прочность

Сварные соединения из сталей хромоникелевых нержавеющих

Уэллс Дж. М., Логсдон У. А., Коссовски Р. Исследование сварных соединений аустенитных нержавеющих сталей криогенного назначения



© 2025 Mash-xxl.info Реклама на сайте