Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Структура и свойства металла сварного шва

СТРУКТУРА И СВОЙСТВА МЕТАЛЛА СВАРНОГО ШВА  [c.42]

Электроды для сварки высоколегированных сталей с особыми свойствами классифицируются, согласно ГОСТ 10052—75, по структуре и составу металла сварного шва. Электроды для сварки сталей аустенитного класса обозначают индексом ЭА. Если имеются добавки молибдена, ванадия, ниобия и других элементов, то их обозначают соответственно ЭА-ЗМ6, ЭА-2Б и т. д. Электроды ферритного класса обозначают ЭФ-ХИ, ЭФ-ХЗО, где буква Ф указывает на то, что сталь относится к ферритному классу, а цифра означает процентное содержание хрома. Электроды для наплавки по ГОСТ 10051—75 обозначают буквой Н, указывающей на их назначение.  [c.614]


При дуговой сварке механические свойства металла сварного шва и прочность соединения в целом зависят от марки титана, марки присадочной проволоки, способов и режимов сварки и могут быть доведены до показателей основного металла. Титановые а-, псевдо-а- и р-сплавы хорошо свариваются, малочувствительны к изменению термических циклов сварки и могут свариваться в широком диапазоне режимов. Сварные соединения из низколегированных а-сплавов почти равнопрочны основному металлу. С повышением легирования различие в прочности и пластичности сварного соединения и основного металла возрастает. Для стабилизации структуры и снятия остаточных напряжений применяют для а-сплавов послесварочный отжиг.  [c.476]

Общие сведения. Сварным соединением называется неразъемное соединение двух или нескольких металлических частей, выполненное сваркой. Сварное соединение состоит из основного (свариваемого) металла, металла околошовной зоны и металла сварного шва. Такое разделение сварного соединения на отдельные зоны объясняется тем, что структура, а иногда и свойства металла шва и околошовной зоны отличаются от свариваемого металла в исходном состоянии. Рассмотрим в общем виде структуру и свойства металла в околошовной зоне сварного соединения низкоуглеродистой конструкционной стали.  [c.80]

При прокатке металла шва [5, 6] сварного соединения улучшается геометрия соединения, структура и свойства металла в зоне деформации. Снижение внутренних напряжений в сварных соединениях после прокатки также способствует повышению работоспособности соединений. Механизм повышения механических свойств сварных соединений в результате раскатки сваренного изделия аналогичен рассмотренному при прокатке металла шва.  [c.16]

В связи с этим в определение технологической свариваемости входит определение химического состава, структуры и свойств металла шва в зависимости от способа сварки, оценка структуры и механических свойств околошовной зоны, склонности стали к образованию трещин, оценка получаемого при сварке сварного соединения.  [c.224]

Общая протяженность околошовной зоны при газовой сварке в зависимости от толщины металла составляет примерно от 8 до 28 мм. Для улучшения структуры и свойств металла шва и зоны термического влияния, выполненных газовой сваркой, применяют горячую проковку металла шва, термообработку нагревом сварочной горелкой и общую термообработку сварного изделия нагревом в печах и медленным охлаждением.  [c.218]


Под технологической свариваемостью понимается возможность получения сварного соединения, определяемого видом сварки. При различных видах сварки происходит окисление компонентов сплавов. В стали, например, выгорает углерод, кремний, марганец, окисляется железо. В связи с этим в определение технологической свариваемости входит определение химического состава, структуры и свойств металла шва в зависимости от вида сварки, оценка структуры и механических свойств около-  [c.223]

Сварочная дуга нагревает металл значительно выше точки плавления. В катодной п анодной областях температура близка к температуре кипения металла. В результате меняется химический состав металла и его структура после затвердевания, изменяются и механические свойства. Металл сварного шва обычно по своим свойствам отличается от основного металла не затронутого сваркой.  [c.77]

СВАРНОЕ СОЕДИНЕНИЕ 1. Сварной шов — совокупность образующихся в результате сварки характерных зон металла в изделии, выявляемая на макро- и микрошлифах. В общем случае сюда входят зона металла шва, зона сцепления, или зона собственно сварки, и зона влияния, характеризуемая изменением структуры и свойств металлов соединяемых частей. В случае сварки давлением  [c.141]

Все три процесса взаимно связаны. Однако первые два преимущественно определяют форму, размеры, структуру и свойства металла шва, а третий — структуру и свойства металла в околошовной зоне. Детали нагреваются внутренними источниками тепла при протекании через них электрического тока. Давление в зоне сварки создается за счет передачи электродам усилия сжатия от соответствующего механизма привода сварочной машины. Режим нагрева и сжатия зависит от физических и химических свойств свариваемого металла. Для каждого конкретного металла можно найти наиболее благоприятный режим, обеспечивающий получение сварного соединения с наилучшими свойствами. Зона расплавления и нагревания при сварке определяется мгновенным температурным полем, которое является функцией непрерывно изменяющегося ноля электрического тока и теплоотвода. При точечной и роликовой сварке электрическое поле тока и теплоотвод существенным образом зависят от отношения диаметра электрического контакта (деталь — электрод и деталь — деталь) к толщине свариваемой детали. Это отношение, в свою очередь, в процессе сварки непрерывно изменяется от исходного значения (при холодных деталях) до конечного  [c.7]

Под тепловыми процессами при сварке принято подразумевать повышение температуры свариваемых изделий (и присадочного материала) под влиянием источников сварочного нагрева, распространение теплоты по изделию и отвод ее в окружающую среду. Источники сварочного нагрева оказывают тепловое воздействие на основной и присадочный металлы, в результате изменяются структура и свойства металла шва и околошовной зоны. В процессе сварки металл плавится, образуя сварочную ванну, а затем затвердевает в виде сварного шва. В зоне сварки жидкий металл взаимодействует с окружающей средой (шлаком и газом). Температура и длительность нагрева при сварке определяют, помимо явлений плавления и кристаллизации металла, прохождение целого ряда сопутствующих процессов в свариваемом материале структурные превращения, объемные изменения, упругопластические деформации и т.д. Эти процессы оказывают значительное влияние на качество сварного соединения и всей конструкции в целом.  [c.34]

Некоторые из этих особенностей являются благоприятными, а некоторые — отрицательными с точки зрения структуры и свойств металла шва. Так, например, в противоположность слиткам и отливкам, сварные швы вследствие большей скорости кристаллизации имеют более тонкую структуру (мельче дендриты и кристаллиты) и, что весьма важно, отличаются меньшей зональной и внутрикристаллитной (дендритной) ликвацией (химической неоднородностью). Благодаря этому, а также вследствие меньшего содержания газов и вредных примесей сварные швы в большинстве случаев обладают более высокими механическими свойствами, чем металл отливок и слитков такого же состава.  [c.271]


При выборе металла для сварочных заготовок необходимо учитывать не только его эксплуатационные свойства, но и его свариваемость или возможность ирименения технологических мероприятий, обеспечивающих хорошую свариваемость. В процессе сварки металл подвергается термическим, химическим и механическим воздействиям. В связи с этим в различных зонах основного металла, расположенного вблизи шва, изменяются его состав, структура и свойства. Следовательно, механические и эксплуатационные свойства металла в зоне сварного соединения могут быть неравноценны таким же свойствам основного металла.  [c.246]

При разработке технологии сварки жаропрочных материалов особую трудность представляет, как правило, выбор сварочных материалов (электродов и сварочных проволок), обеспечивающих необходимые свойства металла шва. Для работы при высоких температурах металл шва, кроме необходимого уровня механических свойств и технологической прочности, должен обеспечивать также достаточную стабильность структуры и свойств при заданных температурах, обладать необходимым сопротивлением ползучести и жаростойкостью, а также рядом других свойств в соответствии с условиями работы данного узла. При этом критерии оценки пригодности того или иного типа сварочных материалов будут существенно зависеть от назначения данного узла конструкции. Так, например, для сварных конструкций камер сгорания газовых турбин пригодность тех или иных электродов будет определяться прежде всего жаростойкостью металла шва. Ряд сварных узлов турбин (рабочие лопатки, роторы и другие) могут работать под воздействием динамических знакопеременных напряжений. Поэтому для данных сварных соединений должна быть проверена их усталостная прочность.  [c.21]

Помимо химического состава основного и присадочного металлов на структуру и свойства сварного шва существенно влияет ряд их физических свойств.  [c.467]

Электрошлаковая сварка. Электрошлаковую сварку широко применяют при изготовлении конструкций из толстолистовых низкоуглеродистых и низколегированных сталей. При этом равнопрочность сварного соединения достигается за счет легирования металла шва через электродную проволоку и перехода элементов из расплавляемого металла кромок основного металла. Последующая термообработка помимо снижения остаточных напряжений благоприятно влияет и на структуру и свойства сварных соединений.  [c.281]

Ввиду различия химического состава и структуры металла шва и основного металла сварные соединения некоторых никелевых сплавов особенно с Сг и Мо имеют существенную неоднородность физикохимических свойств и проявляют склонность к межкристаллитной коррозии. Для таких сплавов рекомендована послесварочная термическая обработка (нагрев до Т = 700. .. 800 °С с последующим охлаждением на воздухе или в воде).  [c.464]

Металл сварного шва по своей структуре и свойствам может заметно отличаться от основного металла, поэтому при оценке жаропрочности сварных соединений должен быть рассмотрен отдельно. Следует также отметить, что швы при работе конструкции, как правило, находятся в наиболее тяжелых условиях из-за конструктивных концентраторов напряжений в вершине и корне и  [c.42]

На работоспособность при высоких температурах сварных соединений теплоустойчивых сталей основное влияние оказывает легирование основного металла и шва, а также термическая обработка заготовок и изделий после сварки. С повышением уровня легирования основного металла и особенно с переходом к термически упрочняемым (улучшаемым) сталям возрастает, как правило, неоднородность структуры и свойств отдельных участков сварного соединения, а также склонность его к хрупким разрушениям.  [c.183]

Зона термического влияния представляет собой участок основного металла, структура и свойства которого изменились в результате нагрева при сварке термически упрочненной стали. Ширина ЗТВ составляет примерно 6. .. 8 мм и достаточно четко видна на макроструктуре поперечного сечения сварного соединения в виде затемненной рельефной полоски, примыкающей к сварному шву с двух сторон (см. рис. 1.8). Ширина этой зоны уменьшается в направлении от корневой к верхней части поперечного сечения шва, что вызвано неодинаковыми тепловыми условиями при сварке многослойных швов.  [c.35]

В большинстве случаев отдельные узлы машин и механизмов изготовляют сваркой. Свойства стали в зоне сварного шва определяются химическим составом стали. Поэтому нужно гарантировать химический состав стали. В то же время те части изделия, которые не подвергаются тепловому влиянию зоны сварного шва, сохраняют исходную структуру и свойства, полученные при прокатке. Поэтому такой металл поставляют с гарантированными механическими свойствами и химическим составом (сталь группы 5).  [c.138]

Сварные соединения после сварки имеют неоднородную структуру металла, что является следствием неравномерного нагрева различных зон сварного соединения. Поэтому механические (прочность, твердость, пластичность) и специальные (коррозионная стойкость, жаропрочность, хладостойкость) свойства различных зон сварного соединения становятся неодинаковыми. Такое положение усугубляется наличием остаточных сварочных напряжений, которые образуются при кристаллизации металла сварного шва. Эти напряжения могут вызвать нежелательные изменения формы и размеров сварных соединений и появление в них трещин, что приводит иногда к разрушению сварных соединений. Остаточные сварочные напряжения снижают также механические и специальные свойства сварных соединений. Поэтому для ответственных сварных соединений необходимы такие технологические операции, которые улучшают структуру и свойства сварных соединений.  [c.205]


Влияние фосфатной пленки на сварку и качество сварного соединения определяли сопоставлением следующих показателей 1) устойчивость процесса сварки и внешнее формирование шва наличие дефектов в металле шва 2) химический состав металла сварного шва 3) механические свойства и структура металла шва и сварного соединения.  [c.234]

Наиболее существенные изменения структуры и свойств основного металла при сварке происходят в сплавах с полиморфным превращением (второй и третий виды), а в металле щва — также и при кристаллизации. При сварке сплавов без полиморфного превращения структура и свойства сварных соединений определяются в основном превращениями первого н четвертого видов. Значительную и, как правило, отрицательную роль во всех случаях играют процессы развития неоднородностей, физической (рост зерна, огрубление тонкой структуры) и химической (макро- и микроскопическая ликвация в металле шва, сегрегация легирующих элементов и примесей в металле зоны термического влияния, диффузионное перераспределение их между разнородными фазами при частичном расплавлении или в твердом состоянии в температурном интервале неполного превращения и т. д.) [2]. При сварке плавлением эти процессы вследствие высокотемпературного нагрева получают значительно большее развитие, чем при сварке давлением в твердой фазе.  [c.11]

При двухдуговой сварке (рис. Х.З, в) каждый электрод присоединен к отдельному источнику постоянного, переменного тока или дуги питаются разнородными токами. Образовавшиеся две дуги могут гореть в одном газовом пузыре. Электроды располагаются перпендикулярно свариваемой поверхности (углы а1= 2=0) или наклонено в плоскости, параллельной направлению сварки. При отклонении первой дуги на угол а1 растет глубина проплавления, определяемая этой дугой при отклонении второй дуги на угол аг увеличивается ширина шва, определяемая этой дугой, благодаря чему можно избежать подреза по кромкам шва (подробнее см. ниже). Сварка по такой схеме дает возможность резко повысить скорость, а значит и производительность сварки. При увеличенном расстоянии между электродами дуги горят в раздельные сварочные ванны. Обычно в таком случае электроды располагаются перпендикулярно поверхности изделия. Сварка по этой схеме позволяет уменьшить вероятность появления закалочных структур в металлах шва и околошовной зоны при сварке закаливающихся сталей и толстого металла. Это объясняется тем, что первая дуга не только формирует шов, но и выполняет как бы предварительный подогрев, который уменьшает скорость охлаждения металлов шва и околошовной зоны, после прохода второй дуги. Вторая дуга частично переплавляет первый шов и термически обрабатывает его. Варьируя необходимый сварочный ток для каждой дуги и расстояние между ними, можно получать требуемый термический цикл сварки и таким образом регулировать структуры и свойства металла сварного соединения. Сварка под флюсом может выполняться автоматически или полуавтоматически.  [c.290]

В процессе сварки плавлением тепловому воздействию подвергается металл возле шва — околошовная зона. Здесь могут происходить сложные структурные изменения, зависящие от природы и состояния металла и от температуры нагрева фазовые переходы в процессе нагрева и охлаждения, рекристаллизация и вообще рост зерен, распад твердого раствора и пр. Все эти изменения в структуре отражаются на прочностных и коррозионных характеристиках металла око-лошовной зоны. Эти же причины могут вызвать появление холодных трещин в металле. Исправить нежелательные изменения бывает далеко не всегда возможно. Поэтому необходимо тщательно продумывать возможные изменения в металле под тепловым воздействием сварного шва, а сам процесс сварки стремиться проводить таким образом, чтобы вызвать наименьшие изменения в структуре и свойствах металла около шва.  [c.129]

В первом случае хрупкость, связанная с крупным зерном, представляет опасность не только для околошовной зоны, но и для металла сварного шва. В некоторой степени она может быть уменьшена, если применять сварочные материалы, даюн ,ие состав металла швов, который при сварочных скоростях охлаждения позволяет получить не чисто ферритную структуру, а с некоторым содержанием мартенситной составляющей. 9то возможно при сварке сталей, содержащих Сг 18%, и достигается введением в металл шва углерода, азота, никеля, марганца. В зависимости от свойств такого закаленного при сварке металла шва выбирают и реячим последующей термообработки. Обычно появление такой гетерогенной структуры снижает коррозионную стойкость сварных соединений в ряде химически агрессивных сред.  [c.274]

Расчет предельного содержания регулируемых элементов в металле шва. В задании на изготовление металла шва ПДС обычно указывается базовый состав (содержание неизмеияющихся элементов) сплава, минимальное Сщщ и максимальное Стах содержание в нем РЭ, минимальные размеры шва. Из размеров шва указываются его плошадь поперечного сечения тш, высота или глубина проплавления основного металла йт1п, ширина Ьты, протяженность участков с дискретным (/ тш, зтш) и переменным ( тш) составом металла. Размеры шва устанавливают исходя из учета изготовления из него образцов требуемого размера и числа, необходимых для исследования структуры и свойств металла шва, а иногда и сварного соединения.  [c.26]

При односторонней сварке стыковые соединения с разделкой кромок сваривают в зависимости от толщины металла однослойными и многослойными швами (рис. 55 б). При выполнении однослойного шва (однопроходного) дугу возбуждают на верхней грани скоса кромки, затем переводят ее вниз, проваривают корень шва и выводят дугу на вторую кромку. Перемещение дуги по скосам кромок замедленное — для обеспечения лучшего проплавления, в корне шва движение дуги ускоренное — для исключения прожога. При значительной толщине металла сварной шов выполняется в несколько слоев. Первый слой (валик) заваривают элект-)одами диаметром 2—3 мм для лучшего провара корня шва. Тоследующие слои шва выполняют электродами больших диаметров (4—6 мм). Перед наложением каждого слоя поверхность предыдущего тщательно очищается от шлака и брызг металла. При многослойной сварке каждый слой отжигается при наложении последующего. Это улучшает структуру и механические свойства металла сварного шва. Чтобы обеспечить достаточный прогрев и отжиг, толщина слоев не должна превышать 5 мм.  [c.113]

Внешний вид шва получается хорошим. Прочностные свойства сварного соединение без дополнительной обработки оказываются низкими вследствие образования крупнозернистой структуры в шве. Стурктура и свойства металла сварных соединений значительно улучшаются проковкой шва при 370 К с дальнейшим быстрым охлаждением водой.  [c.135]

Следует также отметить, что рассмотрение в соединении в качестве мягкой либо твердой прослойки только сварного шва было бы не совсем правомерно. Фактически в сварном соединении имеется целый ряд различных прослоек с разной структурой, химическим составом, а следовательно, и механическими свойствами. Так, на границе сплавления основного металла и металла шва имеются участки с особым составом и свойствами металла, отличающимися от металла шва и основного металла в самом основном металле вследствие изменения структурных составляющие за счет термического воздействия и последующего охлаждения с различными скоростями образуются мягкие (разупроч-нениые) или твердые (закалочные) прослойки, которые в  [c.14]


С затвердеванием металла шва структурные превращения в нем не заканчиваются. Например при сварке стали первичные кристаллиты сразу после их образования состоят из аустенита - твердого раствора углерода и легирующих элементов в у-железе, существующего при высоких температурах (750...1500 °С ). В процессе охлаждения аустенит распадается, превращаясь в зависимости от состава стали и скорости охлаждения в другие фазы пластичный феррит, более прочный перлит и прочный, но малопластичный мартенсит. Скорость охлаждения зоны сварки обычно велика, и структурные превращения не успевают произойти до конца. Следовательно, меняя скорость охлаждения сварного соединения, подогревая или искусственно охлаждая его, можно в некоторых пределах управлять вторичной кристаллизацией металла шва и его механическими свойствами. Теплота, выделяемая источником нагрева, при сварке распространяется в основной металл. Его участки нагреваются до температуры плавления на границе сварочной ванны и имеют температуру окружающей среды вдали от нее. Это не может не сказаться на структуре металла. Зону основного металла, в которой в результате нагрева и охлаждения металла происходят изменения структуры и свойств, называют зоной термического влиянця (ЗТВ). Каждая точка в ЗТВ в зависимости от расстояния до оси шва достигает различной максимальной температуры, нагревается и охлаждается с различными скоростями. Изменение температуры данной точки во времени KdiZUbdiKiX термическш циклом. Каждая точка ЗТВ имеет при сварке свой термический цикл. Значит, металл в ЗТВ подвергается в результате сварки нескольким видам термической обработки. Поэтому в ЗТВ наблюдаются четко выраженные участки с различной структурой и свойствами.  [c.29]

Слоистая ликвация способствует увеличению химической неоднородности металла на этом участке по сравнению с металлом шва. Состав и структура металла в этой зоне зависят также от диффузии элементов, которая может проходить как из основного нерасплавившегося металла в жидкий металл, так и наоборот. Этот участок по существу и является местом сварки. Его протяженность зависит от состава и свойств металла, способа сварки и обычно не превышает 0,5 мм, но свойства металла в нем могут оказывать решающее влияние на свойства всего сварного соединения.  [c.259]

Сопротивление ползучести металла сварного шва, как и механические свойства, зависит от способа его выполнения и жесткости соединения, определяющих характер неравновесности структуры и степень развития субструктуры. На рис. 29 приведены первичные кривые ползучести при температуре 565° С и напряжении 20 кгс1мм металла сварного шва композиции 1МФХ, выполненного наплавкой в уго.яок и сваркой стыка двух пластин толщиной 30 мм (рис. 25). Там же для сравнения показана кривая ползучести стали 12МФХ. Для обоих типов сварных швов стадия" пе-установившейся ползучести развита заметно меньше, чем у основ-  [c.49]

Технологические особенности сварки, т. е. высокая температура нагрева, малый объем сва рочной зоны, спе-цифячность атмосферы над сварочной ванной и др., вызывают, как известно, целый ряд нежелательных последствий. К ним относятся резкая неоднородность зоны сварного соединения между металлом шва и основным металлом по химическому составу, структуре и механическим свойствам, изменение структуры и свойств основного металла в околошовной зоне, образование газовых пор в наплавленном металле, возникновение значительных сварочных напряжений, следствием которых может являться появление трещин и т. д. Свариваемость определяется двумя сторонами — металлургической и тепловой.  [c.31]

Особенностями металлургических процессов при сварке плавлением являются весьма высокие температуры и кратковременность всех процессов. На рис. 153 показана структура зоны влияния (строение сварного шва) после затвердевания и распределение температуры в малоуглеродистой стали в зоне термического влияния. Наплавленный металл 1 (участок 0—1) имеет столбчатое (дендритное) строение, характерное для литой стали при ее медленном затвердевании. Если наплавленный металл или соседний с ним участок 1 был сильно перегрет, то при охлаждении на участке 2 зерна основного металла (низкоуглеродистой стали) имеют игольчатую форму, образуя грубоигольчатую структуру. Этот участок имеет крупнозернистую структуру и обладает наибольшей хрупкостью и весьма низкими механическими свойствами. На участке 3 температура металла не превышает 1000° С. Здесь имеет место нормализация, структура получается мелкозернистой с повышенными механическими свойствами по сравнению с основным металлом. На участке 4 происходит неполная перекристаллизация стали, так как температура нагрева находилась между критическими точками Ас1 и Асз. На этом Участке наряду с крупными зернами феррита образуются и мелкие зерна феррита и перлита.  [c.338]

Дефекты, возникающие в сварных швах, бывают внешние и внутренние. Квнешним дефектам относятся неравномерность поперечного сечения шва и несоответствие его размеров проектным, подрезы основного металла, чрезмерное усиление, наружные трещины и поры, незаваренные кратеры. Квнутренним дефектам относятся непровары, загрязнение металла шва шлаковыми включениями, внутренние поры и трещины, пережог металла шва, вызывающий изменение структуры и свойств основного металла в зоне теплового влияния. Примеры внутренних и внешних дефектов приведены на рис. 168.  [c.258]


Смотреть страницы где упоминается термин Структура и свойства металла сварного шва : [c.151]    [c.94]    [c.9]    [c.300]    [c.7]    [c.260]    [c.246]    [c.103]   
Смотреть главы в:

Жаропрочность сварных соединений  -> Структура и свойства металла сварного шва



ПОИСК



Влияние термического цикла сварки на структуру и свойства металла в сварных соединениях Характерные зоны металла в сварных соединениях

Металлов Свойства

Определение механических свойств и структуры металла сварных соединений

Свойства с а-структурой

Структура и свойства металлов

Структура и свойства сварных соединений металлов и сплавов

Структура и свойства сварных соединений углеродистых и легированных сталей Кристаллизация наплавленного металла сварных соединений углеродистых и низколегированных перлитных сталей



© 2025 Mash-xxl.info Реклама на сайте