Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Макроскопические свойства поверхности

Макроскопические свойства поверхности  [c.19]

Такая модель поверхности обычно используется при рассмотрении поверхностных электронных явлений. Феноменологический подход к проблеме позволил последовательно и достаточно полно описать основные закономерности разнообразных электронных процессов, разыгрывающихся на поверхности твердого тела и на межфазных границах. В рамках теоретических представлений удалось установить важные взаимосвязи между макроскопическими свойствами поверхности и параметрами ПЭС, определяющие такие фундаментальные процессы, как захват и рекомбинацию носителей заряда, их транспорт в поверхностных фазах. Показано, что все эти взаимосвязи существенно изменяются при переходе от монокристаллов к системам с пониженной размерностью, когда размеры самих объектов начинают приближаться к характеристическим длинам электронной подсистемы твердого тела. Это кластеры вещества, нитевидные структуры и тонкие пленки нуль- (О/)), одно- (1/)) и двумерные 2В) структуры микро- и наноэлектроники.  [c.12]


В настоящее время известно, что макроскопические дефекты поверхности металлов типа глубоких и мелких царапин, уступов, ламелей и т. п. в значительной мере определяют их коррозионную стойкость, а также механические свойства, связанные с усталостной прочностью. Дефекты, расположенные в объемах кристаллов или зерен, изменяют механические свойства.  [c.83]

В классической теории зародышеобразования (разд. 2.1) обычно рассматриваются флуктуации первого из указанных выше типов, и любая система в достаточно малых объемах считается устойчивой относительно таких флуктуаций. Причина этого обычно объясняется следующим образом при фазовых превращениях отрицательному по знаку изменению свободной энергии, обусловленному образованием некоторого объема более стабильной фазы (или фаз), противостоит положительное по знаку изменение свободной энергии, происходящее вследствие появления новой поверхности раздела фаз. По мере уменьшения объема претерпевшей превращение области положительная поверхностная энергия должна в конце концов превысить выигрыш в свободной энергии, пропорциональный объему зародыша. Понятно, что эти макроскопические концепции не вполне применимы к зародышам, содержащим небольшое число атомов, и такое деление на объемную и поверхностную энергию совершенно произвольно. Тем не менее подобный формализм оказывается полезным, хотя используемые при этом параметры, такие, как поверхностная энергия, нельзя приравнивать к соответствующим макроскопическим свойствам.  [c.228]

Отметим здесь, что даже при очень больших разрежениях газ сохраняет свои макроскопические свойства. Например, на высоте 150 км плотность примерно равна 1,6-10 кг м , т. е. очень мала, однако число молекул в одном кубическом сантиметре равно 6,Ы0 , т. е. все еще очень велико и вполне достаточно для вычисления таких макроскопических величин, как давление, температура, число Маха. В то же время в свободно-молекулярном потоке не образуется пограничного слоя. Учитывая, что столкновения молекул друг с другом у поверхности тела происходят очень редко, можно считать, что в этом простран-  [c.287]

Механику разреженных газов можно разделить на две части. Если газ сильно разрежен, то частота столкновений молекул в элементе объема di ( 1.6) пренебрежимо мала. Однако даже при очень низких плотностях число молекул в объеме dz достаточно для определения макроскопических свойств газа. Такое движение называется свободномолекулярным движением. Например, когда длина свободного пробега молекул в верхних слоях атмосферы равна 3 м (т. е. столкновений мало), число молекул в кубическом сантиметре около 1,5 lO a и давление, температуру и массовую скорость можно рассчитать по методу, описанному в 1.4. Вблизи поверхности тела взаимодействие падающих и охра-  [c.204]


Известно, что макроскопические свойства твердого тела зависят от его абсолютных размеров. Основанием для такого утверждения является характер взаимодействия частиц (атомов, молекул или молекулярных групп) твердого тела [12]. Частицы поверхности испытывают одностороннее взаимодействие со стороны других частиц тела, в то время как для глубинных слоев выполняется условие статистической симметрии силового взаимодействия частиц. В макроскопическом аспекте рассмотрения механических свойств изотропного твердого тела это должно привести к существованию неоднородности вблизи границы и к поверхностному натяжению. Коэффициент поверхностного натяжения твердых тел имеет величину порядка 10" кгс/см [13], и в задачах, решаемых в рамках физической и геометрической линейности, эффектом поверхностного натяжения можно пренебречь. В дальнейшем для выявления масштабного фактора исследуем только поверхностную неоднородность, полагая, что вдали от границы тело является однородным. В данном параграфе будем придерживаться работы [14].  [c.415]

Проблема детектора теплового излучения неотделима от вопроса об излучательных свойствах источника излучения. Спектральные характеристики излучения черного тела, как будет показано, описываются законом Планка. Проинтегрированный по всем длинам волн закон Планка приводит к закону Стефана — Больцмана, который описывает температурную зависимость полного излучения, испущенного черным телом. Если бы не было необходимости учитывать излучательные свойства материалов, оптический термометр был бы очень простым. К сожалению, реальные материалы не ведут себя как черное тело, и в законы Планка и Стефана — Больцмана приходится вводить поправочные факторы, называемые коэффициентами излучения. Коэффициент излучения зависит от температуры и от длины волны и является функцией электронной структуры материала, а также макроскопической формы его поверхности.  [c.311]

Система, состоящая из нескольких макроскопических частей с различными физическими свойствами, отделенных одна от другой видимыми поверхностями раздела, называется гетерогенной. Например, лед и вода, вода и пар и др.  [c.16]

Из гипотезы 2 или из (2.2.8) следует важное для дальнейшего свойство введенных осредненных величин, а именно макроскопические параметры, образующиеся в результате осреднения по объемам фаз dVi и поверхностям внутри фаз dsi, совпадают между собой и, в частности, совпадают в каждой точке объемные и поверхностные концентрации  [c.65]

Нас будут интересовать системы, для которых характерны термодинамические свойства. Этими свойствами являются любые признаки, имеющие количественную меру и относящиеся к системе в целом или к ее макроскопическим частям, кроме характеристик потоков энергии и массы. Например, термодинамическими свойствами являются масса, плотность, давление, температура, намагниченность, термическое расширение, сжимаемость, теплоемкость при постоянном давлении и другие, но не вязкость, диффузия, теплопроводность, скорость химической реакции или другие кинетические свойства, выражаемые величинами, в размерность которых входит время. Иногда, как, например, при рассмотрении поверхностных явлений, интерес представляет даже форма граничной поверхности (ее количественной мерой может служить значение кривизны поверхности в каждой точке). Но как правило, общая масса и форма системы не существенны для термодинамического анализа.  [c.11]

Различные форм[я одного и того же вещества, отличающиеся физическими свойствами и ограниченные друг от друга видимыми макроскопическими поверхностями раздела, называются фазами. Понятие фазы не следует отождествлять с понятием агрегатного состоя-  [c.74]

Усталость — это полная потеря свойств (или разрушение) элемента конструкции, наступившая после действия на него переменной нагрузки, максимальная амплитуда которой по величине меньше статической, монотонно прикладываемой нагрузки, вызывающей разрушение этого элемента. Процесс разрушения и усталости металлов зависит от состава, особенностей металлургического процесса, геометрии образца (элемента конструкции), вида нагрузки, времени и условий внешней среды. Для композитов число влияющих параметров необходимо увеличить по крайней мере вдвое из-за наличия в материале двух фаз. Более того, необходимо также учесть и влияние поверхности раздела, что приведет к еще большему усложнению задачи. Конечно, ни одна приемлемая модель для предсказания процесса разрушения не мол<ет одновременно включить все вышеупомянутые параметры. Действительно, невозможно себе представить систему черного ящика , у которого на входе — весь комплекс переменных параметров, а на выходе — только скорость роста разрушения и время достижения предельного состояния. Поэтому не существует единого подхода для определения усталостного разрушения для металлов (которые по крайней мере при макроскопическом подходе рассматриваются как однородные). Для композитов проблема тем более усложняется вследствие присущей им неоднородности. Усталости композитов посвящены многочисленные работы. Достижения и современные тенденции в этой области обобщены в работах [49, 50].  [c.84]


Согласно этой теории давление р является результатом ударов молекул об ограничивающие тело поверхности. Таким образом, с молекулярно-кинетической точки зрения давление р. равно как и температура Т, являются статистическими величинами, характеризующими свойства макроскопических тел. Давление численно равно силе, действующей на единицу площади поверх-  [c.9]

Гетерогенная система — макроскопически неоднородная термодинамическая система, состоящая из различных по физическим свойствам или химическому составу частей (фаз). Смежные фазы гетерогенной системы отделены друг от друга физическими поверхностями раздела, на которых скачком изменяется одно или несколько свойств системы (состав, плотность, кристаллическое строение, электрические и магнитные свойства и др.). Примером гетерогенной системы являются композиционные материалы, в которых компоненты отличны по составу, строению, свойствам. Различие между гетерогенной и гомогенной (однородной) системами не всегда четко выражено. Так, переходную область между гетерогенными механическими смесями (взвесями) и гомогенными (молекулярными) растворами занимают коллоидные растворы, в которых частицы растворенного вещества столь малы, что к ним неприменимо понятие фазы.  [c.25]

Каждый слой обладает набором свойств, прямо связанных со свойствами соответствующего материала (А или В) в массивном образце. Первый ряд вопросов, которые из этого вытекают, таков. Каковы состав и структура слоев Соответствуют ли оптические свойства вещества в слое оптическим свойствам вещества в массивном образце Является ли плотность атомов в слое, отнесенная к единичной площадке, постоянной или же зависит от способа осаждения Само понятие единичная площадка можно трактовать как эффективную площадь, соответствующую одному атому или же как макроскопическую величину, характеризующую всю напыляемую поверхность. Введение локальной концентрации атомов в слое -- это лишь один из способов характеризовать неоднородность слоя, отвлекаясь от свойств шероховатости и плавности.  [c.430]

В этой книге получены свойства течений газа, исходя из модели молекулы и распределения скоростей молекул. Макроскопические свойства невязкого, сжимаемого (изоэн-. тропического) течения выведены в предположении, что молекулы являются просто сферами и подчиняются максвелловскому закону распределения. Для соответствующих вычислений в случае вязкого, сжимаемого (мало отличающегося от изоэнтропического) течения необходимо пользоваться более сложной моделью молекулы (центральное силовое поле) и функцией распределения, которая несколько отличается от функции распределения Максвелла. Примерами таких течений являются течения со слабыми скачками и течения в пограничном слое. Молекулярные представления позволяют получить и уравнения движения газа и граничные условия на поверхности твердого тела. Рассмотрение этих вопросов приводит к понятию о течении со скольжением и явлении аккомодации температуры в разреженных газах. Такие же основные идеи были использованы для построения теории свободномолекулярного течения.  [c.7]

Далее необходимо учесть следующее. Уже в макроскопической теории рассхмотренное приближение двух идеально однородных сред и геометрической плоскости раздела оказывается непригодным необходимо учитывать переходный поверхностный слой. Характеристику вещества в объеме можно получить лишь на основании независимых экспериментов иного рода или теоретических соображений, связывающих свойства поверхности с объемными. Это обстоятельство следует отчетливо иметь в виду, особенно для металлов. При этом часто бывает неприемлемо приближение локальной теории и необходимо учитывать пространственную дисперсию в поверхностном слое.  [c.131]

Гигроскопичность диэлектриков зависит от их структуры и состава. Неполярные органические диэлектрики, например парафин, полиэтилен, полипропилен, обладают очень малой гигроскопичностью, почти не поглощают влаги из возду а и даже при длительном пребывании во влажной среде сохраняют хорошие диэлектрические свойства. Полярные диэлектрики обладают обычно большей гигроскопичностью, причем закрепление полярных молекул воды около полярных групп молекул диэлектрика замедляет поглощение влаги и равновесное состояние (предельное влагопоглоще-ние) наступает в них за большее время, чем у неполярных. Некоторые вещества, поглощая влагу, образуют с ней твердый коллоидный раствор — набухают. У таких диэлектриков (например, целлюлозные материалы) влагопоглощение может быть очень большим и вызывать сильное ухудшение электрических параметров. Наличие в диэлектриках водорастворимых составных частей и солей повышает их гигроскопичность. Многие неорганические диэлектрики, обладающие плотной структурой, например стекло, непористая керамика, практически не обнаруживают объемного поглощения воды. Проникновение влаги в диэлектрик может происходить через имеющиеся в нем поры. По своему характеру пористость может быть открытой в виде каверн на поверхности закрытой — в виде внутренних воздушных пустот, не сообщающихся с окружающей средой сквозной — в виде каналов, пронизывающих диэлектрик насквозь. Наибольшее влияние на электрические параметры оказывает влага, попадающая в сквозные поры. Конденсируясь на их стенках, вода образует сплошные пленки повышенной проводимости. Имеют значение и размеры пор, которые могут быть разными от макроскопических до суб-микроскопических размером (5—10)-10 см.  [c.110]

Особый вид волокнистого материала представляют собой плетеные или вязаные чулки (пустотелые шнуры), являющиеся основой лакированных трубок. Структура волокнистых материалов предопределяет некоторые их видовые свойства. К числу таковых относятся большая поверхность при сравнительно малой толш,ине в исходном состоянии, неоднородность, вызванная наличием макроскопических пор, т. е. промежутков между отдельными волокнами и нитями и связанная с ней гигроскопичность. Сами растительные волокна обладают известной пористостью, микроскопической и субмикроскопической, которую образуют, например, мельчайшие капилляры. Некоторые волокнистые материалы имеют в своем составе гидрофильные ( водолюбивые ) составные части, способные поглощ,ать влагу из воздуха, набухая при этом и образуя коллоидные системы примерами таких (объемно-гигроскопичных) волокон является клетчатка и др. Материалы, состоящие из волокон, не обладающих объемной гигроскопичностью, как правило, абсорбируют влагу из воздуха за счет наличия пор и смачиваемости поверхности волокон водой, что вследствие сильно развитой поверхности волокон может послужить причиной значительной общей гигроскопичности. Само собой понятно, что материалы из объемно-гигроскопичных волокон будут обладать особенно большой гигроскопичностью. У тканей электрическая прочность определяется пробоем воздуха в макроскопических порах. В бумагах и картонах образование крупных сквозных пор менее вероятно. Так или иначе, но наличие воздушных пор приводит к тому, что все пористые волокнистые материалы обладают сравнительно низкой электрической прочностью, тем меньшей, чем меньше структурная плотность материала. В связи с вышеописанными общими свойствами волокнистых материалов в большинстве случаев их применения требуется пропитка, в результате которой повышается электрическая прочность и снижается скорость поглощения влаги.  [c.164]


Магнитные свойства материалов обусловлены внутренними скрытыми формами движения электрических зарядов, представляющими собой элементарные круговые токи. Такими круговыми токами являются вращение электронов вокруг собственных осей — электронные спины и орбитальное вращение электронов в атомах. Явление ферромагнетизма связано с образованием внутри некоторых материалов ниже определенной температуры (точки Кюри) таких кристаллических структур, при которых в пределах макроскопических областей, называемых магнитными доменами, электронные спины оказываются ориентированными параллельно друг другу и одинаково направленными. Таким образом, характерным для ферромагнитного состояния вещества является наличие в нем самопроизвольной (спонтанной) на.магниченности без приложения внешнего магнитного поля. Однако, хотя в ферромагнетике и образуются самопроизвольно намагниченные области, но направления магнитных моментов отдельных доменов получаются самыми различными, как это вытекает из закона о минимуме свободной энергии системы. Магнитный поток такого тела во внешнем пространстве будет равен нулю. Возможные размеры доменов для некоторых материалов составляют около 0,001—10 мм при толщине пограничных слоев между ними в несколько десятков — сотен атомных расстояний. У особо чистых материалов размеры доменов могут быть и больше. Существование доменов удалось показать экспериментально. При очень медленном перемагничивании ферромагнитного образца в телефоне, соединенном через усилитель с катушкой, охватывающей образец, можно различать отдельные щелчки, связанные непосредственно со скачкообразными изменениями индукции. На полированной поверхности намагничиваемого образца ферромагнетика можно обнаружить появление тип1 чных узоров, образующихся с помощью осаждения тончайшего ферромагнитного порошка на границах от-  [c.267]

При макроскопических исследованиях изучают натуральную структуру шлифа или увеличенную с помощью сильной лупы (20—30-кратной). Эти незначительные увеличения позволяют получать большую глубину резкости (различие по высоте между структурными составляющими сильно растворяющимися и нерастворя-ющимися) и применять агрессивные травители — макротравители. Исследования при небольших увеличениях позволяют оценить свойства структуры и различать физические и химические свойства по всей поверхности шлифа, поэтому говорят об обзоре структуры. Макротравление выявляет текстуру литья, прокатки, ковки и ликвацию. Макроструктура позволяет выяснить до известной степени историю материала.  [c.26]

Видимый характер и интенсивность этих повреждений могут быть различными в зависимости от свойств конструкционного материала и агрессивной среды. В качестве последней мы рассмотрим пресную воду, т. е. среду малой агрессивности, которая тем не менее сильно снижает сопротивление усталости конструкционных элементов из углеродистых, хромисто-кремниевых, а при больших долговечностях — также и нержавеющих хромистоникелевых сталей. Картину развития макроскопических повреждений на образцах углеродистых сталей, омываемых в процессе циклического нагруження водой, можно наблюдать с помощью микроскопа с небольшим увеличением (примерно X100). Уже после числа циклов нагружения, составляющих 5—10 % от полной долговечности образца на данном уровне напряжения, на поверхности металла наблюдаются пятнами следы коррозионного  [c.168]

ТЕПЛОЕМКОСТЬ (решеточная — теплоемкость, связанная с поглощением теплоты кристаллической решеткой удельная— тепловая характеристика вещества, определяемая отношением теплоемкости тела к его массе электронная — теплоемкость металлов, связанная с поглощением теплоты электронным газом) ТЕПЛООБМЕН (излучением осущесгв-ляется телами вследствие испускания и поглощения ими электромагнитного излучения конвективный происходит в жидкостях, газах или сыпучих средах путем переноса теплоты потоками вещества и его теплопроводности теплопровод-ноетью проходит путем направленного переноса теплоты от более нагретых частей тела к менее нагретым, приводящего к выравниванию их температуры) ТЕПЛОПРОВОДНОСТЬ (решеточная осуществляется кристаллической решеткой стационарная характеризуется неизменностью температуры различных частей тела во времени электронная — теплопроводность металлов, осуществляемая электронами проводимости) ТЕПЛОТА (иенарения поглощается жидкостью в процессе ее испарения при данной температуре конденсации выделяется насыщенным паром при его конденсации образования — тепловой эффект химического соединения из простых веществ в их стандартных состояниях плавления поглощается твердым телом в процессе его плавления при данной температуре сгорания — отношение теплоты, выделяющейся при сгорании топлива, к объему или массе сгоревшего топлива удельная — отношение теплоты фазового перехода к массе вещества фазового перехода — теплота, поглощаемая или выделяемая при фазовом переходе первого рода) ТЕРМОДЕСОРБЦИЯ — удаление путем нагревания тела атомов и молекул, адсорбированных поверхностью тела ТЕРМОДИНАМИКА — раздел физики, изучающий свойства макроскопических физических систем на основе анализа превращений без обращения к атомно-молекулярному строению вещества  [c.286]

Изменения степени перекрытия рл-электронных орбиталей атомов в области изгиба может сопровождаться изменением типа гибридизации электронных связей от графитоподобного sp к алмазоподобному spi . Спектр электронных состояний таких атомов углерода будет определяться я-электронами аналогично тому, как это имеет место в алмазе. Степень делокализации соответствующих энергетических уровней может быть достаточно высокой из-за того, что атомы с модифицированной изгибом электронной конфигурацией образуют макроскопически большие области на поверхности кластеров. Электронные свойства этих атомов более подобны алмазу, чем графиту. В частности, их спектр электронных состояний должен содержать уровни, разделенные энергетическим зазором, близким по величине к ширине запрещенной зоны алмаза, как это показано в зонной диаграмме на рис. 5.14 [271]. Так же, как и в случае алмаза, можно ожидать, что дно зоны проводимости (уровень E на рис. 5.14) модифицированного углеродного материала в области изгиба будет расположен достаточно близко к уровню электронов в вакууме Очевидно, что толщина слоя таких атомов, равная  [c.210]

К настоящему времени имеется много данных, свиде-тельствз ющих о хороших электроизоляционных свойствах ОКИСНЫХ пленок на металлических поверхностях контактов [Л. 13]. Если руководствоваться основными положениями электротепловой аналогии, то следует ожидать роста термического сопротивления в зоне контакта металлических поверхностей в процессе их окисления. Однако при рассмотрении контактного теплообмена сопротивлением ОКИСНЫХ пленок обычно преднамеренно пренебрегают или не уделяют должного внимания. В ряде работ [Л. 114, 115] установлено, что при наличии относительно толстых ОКИСНЫХ пленок термическое сопротивление контакта значительно выше, чем для соединений с неокис-ленными поверхностями. Отмечается зависимость роста термического сопротивления с повышением толщины окисной пленки [Л. 116], которая имеет наиболее выраженный характер для соединений с малотеплопроводной межконтактной средой и при наличии макроскопических областей контакта. Такое влияние окисных пленок на термическое сопротивление в известной мере присуще и соединениям металлических поверхностей на клеях.  [c.187]


При длительном действии статических или циклических напряжений на сталь в коррозионной среде, вызывающем явление коррозионной усталости, может происходить макроскопически хрупкое разрушение стали без признаков пластической деформации, которая могла бы фиксироваться визуально. Кроме хрупкого разрушения, происходит также коррозионное поражение поверхности металла и появление на ней более или менее толстого слоя окислов. Окисленной может быть или вся поверхность металла, или только отдельные ее места, что будет зависеть от агрессивности среды и свойств стали. Опыты показали, что длительное статическое или циклическое нагружение практически не влияет на интенсивность общей коррозии, и потеря в весе от коррозии металла, который находился в коррозионной среде как под нагрузкой, так и без нее, почти равна. Напряженное состояние стали влияет не на увеличение потерь от общей коррозии, а на усиление избирательной коррозии коррозия, в этом случае, обычно развивается как ножевая коррозия. Под таким термином мы объединяем как межкристаллитную, так и транскристаллит-ную коррозию в виде трещин, обычно перпендикулярных к действующим нормальным напряжениям.  [c.100]

Одним из критериев долговечности является выносливость, под которой понимают способность материала сопротивляться усталости, или постепенному наколлению повреждений под действием циклически повторяющихся нагрузок. Выносливость зависит от живучести, определяющей продолжительность работы детали от момента зарождения первой макроскопической трещины усталости (размером 0,5. .. 1,0 мм) до разрушения. Усталостный излом всегда имеет две зоны разрушения усталостную зону предварительного разрушения с мелкозернистым, часто ступенчато-слоистым строением, иногда с отдельными участками блестящей поверхности, и зону долома, носящую характер вязкого или хрупкого (в зависимости от свойств металла) разрушения.  [c.53]

Развитие представлений о микромеханизмах деформации и разрушения поверхностей при трении вьiявиJЮ ограниченность существовавшего подхода. Как известно, разрушение материалов и их прочностные свойства контролируются дефектами строения, В случае кристаллических тел важная роль принадлежит дислокациям и в большинстве jrvMaeB макроскопические 4  [c.4]

Локализованные вдоль поверхности возмущающие воздействия окружающей среды (эффекты Иоффе, Роско, Крамера, Ребиндера) существенно изменяют механические свойства макроскопических объемов твердых тел. Окисная пленка субмик-ронной толщины служит эффективным барьером для выходящих на поверхность дислокаций и вызывает упрочнение материала. Наоборот, адсорбция молекул окружающей среды уменьшает поверхностную энергию и оказывает пластифицирующее влияние на объем мааериала.  [c.6]

Шар в кубе. Рассматрим макроскопически однородный и изотропный материал, состоящий из однородной матрицы и включений сферической формы. Будем считать, что каждое включение окружено поверхностью S , целиком лежащей в объеме V и ограничивающей объем Vn так, что Vi/Vn — mi, где Vi - объем включений. Допускается, что объем Vn имеет форму куба всех размеров - от некоторых конечных до исчезающе малых - таких, что ими можно заполнить весь объем материала (см. рис. 2.12). В этом случае можно вьщелить элементарную ячейку в виде шара в кубе, эффективные свойства которой будут равны свойствам всего МНМ.  [c.179]

Проблеме установления законов связи между напряжениями и деформациями при сложных напряженных состояниях и сложных нагружениях посвящены фундаментальные исследования Мелана [1], А. А. Ильюшина [2—4], Прагера [5], Драккера [6,7], А. Ю. Ишлинского [8] и др. Эти йсследования носят макроскопический характер, В них формулируются определенные, не противоречащие опыту, общие принципы, на основании которых может быть установлена форма связи между напряжениями и деформациями. Например, в работе [3] сформулированы следующие общие принципы I) условие однозначности, 2) постулат изотропии, 3) гипотеза о разгрузке, 4) постулат пластичности. Из постулата изотропии и гипотезы о разгрузке вытекает общая тензорно-линейная форма связи между напряжениями и деформациями и полярное уравнение поверхности текучести, выражающее длину вектора деформации Э в виде неопределенной функции его кова-риантных составляющих, а из постулата пластичности вытекает уточненный А. А. Ильюшиным принцип градиентальности [9]. Эти общие принципы позволяют установить некоторые свойства после-  [c.4]

Наконец, косвенным методом изучения свойств приграничных зон зерен, обогащенных при развитии отпускной хрупкости атомами примесей, можно считать выбор в качестве объекта исследования аморфных металлических сплавов. Этот метод основан на отмеченной в работах [217, 268] аналогии между структурой и химическим составом аморфных сплавов на основе железа, которые в качестве аморфк заторов содержат 10—20 % металлоидных элементов, в частности фосфора, и границ зерен (в кристаллических сплавах железа), обогащенных теми же элементами примерно до таких же концентраций и имеющих структуру и свойства, описываемые так же как и структура аморфных сплавов в терминах полиэдров Бернала [176]. Так, в предположении, что аморфный сплав 682 8 является макроскопической моделью границ зерен, обогащенных фосфором, в кристаллическом сплаве Ре — Р, была проверена и подтверждена [217] гипотеза о влиянии зернограничной сегрегации фосфора (обусловленной, например, развитием отпускной хрупкости) на накопление атомарного водорода в местах выхода границ зерен на поверхность сплава, находящегося в водородсодержащей среде. По-видимому, этот метод может быть успешно применен и для решения других задач, связанных с исследованием свойств обогащенных границ зерен.  [c.29]

Характерной особенностью структуры стали, полностью обез-углероженной, является отсутствие перлита, растрескивание по границам зерен (рис. 67), микро- и макроскопические вздутия. Глубину водородной коррозии стали можно определить при помощи макроскопического и микроскопического анализов. На протравленных шлифах отчетливо видна более светлая обезуглероженная зона, окаймляющая реакционную поверхность. Как уже отмечалось, при взаимодействии водорода со сталью наблюдается период запаздывания, т. е. интервал времени от момента начала контакта водорода с поверхностью металла до появления заметных признаков водородной коррозии. Интервал времени, в течение которого не происходит видимых изменений микроструктуры и механических свойств металла, называется индукционным периодом в процессе обезуглероживания стали.  [c.118]

В предпоследней колонке результаты измерений [124, 125] для тех же порций жидкостей, с которыми проведены опыты на пузырьковой камере. Только для эфира расхождение значений 0д в двух последних колонках превышает 3%. Но в этом случае данные [122] относятся, вероятно, к необезвоженному эфиру. Лелюх и Скрипов [125] поставили контрольные опыты с насыщенным водой эфиром и получили значения 0о, указанные в [122]. Из табл. 27 видно очень хорошее согласие рассчитанных и измеренных значений поверхностного натяжения. Таким образом, подтверждается принятое в теории макроскопическое описание поверхностных свойств зародышевых пузырьков. В исследованной области перегретых состояний (р 0) не сказывается существенно эффект кривизны разделяющей поверхности. Однако обращает на себя внимание то обстоятельство, что рассчитанные значения о систематически ниже измеренных.  [c.147]


Смотреть страницы где упоминается термин Макроскопические свойства поверхности : [c.129]    [c.139]    [c.265]    [c.79]    [c.330]    [c.88]    [c.127]    [c.234]    [c.17]    [c.79]    [c.53]    [c.249]    [c.13]    [c.183]    [c.77]   
Смотреть главы в:

Теоретические основы коррозии металлов  -> Макроскопические свойства поверхности



ПОИСК



Макроскопические свойства

Поверхность свойства



© 2025 Mash-xxl.info Реклама на сайте