Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Столкновение молекул

Рассмотрим, например, процесс сжатия газа в цилиндре. Если время смещения поршня от одного положения до другого существенно превышает время релаксации, то в процессе перемещения поршня давление и температура успеют выравняться по всему объему цилиндра. Это выравнивание обеспечивается непрерывным столкновением молекул, в результате чего подводимая от поршня к газу энергия достаточно быстро и равномерно распределяется между ними. Если последующие смещения поршня будут происходить аналогичным образом, то состояние системы в каждый момент времени будет практически равновесным.  [c.10]


Эта энергетическая функция обобщает все вопросы строения и состава реагирующих веществ и способов их возбуждения (термическое, радиационное, электронный удар). Таким образом, далеко не все столкновения молекул реагирующих веществ будут активными, а только те, которые будут обладать энергией, равной или большей энергии активации.  [c.296]

Из-за столкновений молекул газа со стенками сосуда возникает давление, определяемое как сила взаимодействия, отнесенная к единице площади. Чем больше скорость молекул, с тем большей силой они будут действовать на стенки при столкновении. Поэтому тем больше будет величина давления.  [c.37]

Давление легко измерить. И если вычислить, как оно связано со скоростью молекул, по величине давления можно определить характерную величину скорости, а, стало быть, и энергии молекул. Мы проведем сейчас это вычисление так, чтобы попутно увидеть, что, хотя давление возникает из-за столкновений молекул со стенками, оно является интенсивным макроскопическим параметром и существует в каждой точке внутри газа. В том смысле, что на любую площадку внутри газа, не важно, действительно существующую или воображаемую, с двух сторон действуют равные по величине и противоположные по направлению силы, равные произведению давления на площадь площадки.  [c.37]

Когда тепловой контакт обеспечивается соприкосновением двух тел, этот обмен энергией связан со случайными столкновениями молекул на границе их раздела. Однако непосредственное соприкосновение вовсе не обязательно. Потому что тела могут обмениваться энергией посредством электромагнитного теплового излучения, даже находясь на значительном расстоянии друг от друга Существенно только, что при любой форме теплового контакта обмен энергией может происходить без изменения объема или формы тел, т.е. без непосредственного силового взаимодействия между ними. Эту энергию, которая передается от тела к телу таким немеханическим путем, называют теплотой.  [c.72]

Непосредственно после столкновения молекула не покидает объема V, она остается внутри него. Но ее скорость меняется, она полз чает другие значения, отличные от Поэтому после столкновения молекула пополнит состав какой-то другой скоростной группы, а число молекул г-й группы уменьшится на единицу.  [c.193]

Последние равенства в формулах (9.14) и (9.15) показывают, что вязкость и теплопроводность газов растут с температурой, а при заданной температуре не зависят от плотности газа или от его давления. Независимость ст плотности или давления получается в предположении, что Х= 1/пст. Она будет сохраняться до тех пор, пока длина свободного пробега лимитируется столкновениями молекул. Но при уменьшении плотности величина X рано или поздно неизбежно становится порядка размеров сосуда, после чего ее рост прекращается. С этого момента и вязкость, и теплопроводность начнут уменьшаться при дальнейшем уменьшении плотности.  [c.201]


Bo время столкновения молекула действует на стенку с силой F2, равной по третьему за-  [c.74]

Отчетливое представление о тормозящей силе Ftp = —можно также получить, рассматривая движение плоской пластинки в направлении, перпендикулярном ее плоскости, сквозь газ при очень низком давлении, при условии, что скорость V пластинки значительно меньше ), чем средняя скорость v молекул газа (рис. 7.10). Давление должно быть достаточно низким, для того чтобы мы могли пренебречь столкновениями молекул друг с другом. Скорость, с которой молекулы ударяются  [c.220]

Отнюдь не каждое столкновение молекул сопровождается химической реакцией между ними напротив, в реакцию вступает лишь очень незначительная доля сталкивающихся молекул. Это значит, что Тсв т и потому vi <С с. Таким образом, в рассматриваемом режиме скорость распространения пламени мала по сравнению со скоростью звука 2).  [c.664]

Заселение уровня 4 осуществляется в результате следующих двух процессов столкновений молекул СО2 с электронами и резонансной передачи энергии от молекул азота к молекулам углекислого газа. Добавление гелия в рабочую смесь лазера СО2 приводит к увеличению разности заселенностей рабочих уровней, так как гелий эффективно обедняет нижние уровни 2 и 3. Добавление гелия приводит также к снижению температуры смеси, что уменьшает скорость безызлучательной релаксации уровня 4 и увеличивает выходную мощность лазера. Следует отметить, что СОг-лазер является самым мощным ). Его выходная мощность может достигать 1 МВт в непрерывном режиме.  [c.291]

Переходная область между режимом со скольжением и свободно-молекулярным режимом остается до сих пор мало изученной, так как в ней приходится учитывать как столкновения молекул между собой, так и неоднократные столкновения их с телом, а это создает большие теоретические трудности.  [c.133]

Несмотря на то, что частота столкновений молекул в элементарном объеме при этом режиме пренебрежимо мала, число молекул в единице объема достаточно велико для того, чтобы можно было определять средние макроскопические свойства газа. Например, на высоте 150 км, когда длина свободного пробега Г=18 м, число молекул в 1 см составляет 2,5 10 .  [c.147]

Под свободно-молекулярным течением в длинной трубе понимают такое течение, в котором длина свободного пробега молекул Z много больше диаметра трубы <7. В этом случае необходимо учитывать столкновения молекул со стенками, но можно пренебречь столкновениями молекул между собой, следовательно, максвелловское распределение скоростей хаотического движения молекул, устанавливающееся при отражении от стенок, внутри труб не нарушается.  [c.169]

Пусть толщина стенки б сравнима с длиной свободного пробега молекул, вследствие чего возможно лишь однократное столкновение молекулы с внутренней поверхностью, ограничивающей отверстие.  [c.175]

Взаимодействие молекул с окружающей средой в большинстве случаев приводит к существенным изменениям их ИК-спектров поглощения. Это проявляется в уширении, сдвиге, асимметрии и иногда в появлении новых диффузных полос. Следует различать два типа взаимодействий молекул, имеющих различные спектроскопические проявления. Это взаимодействия при образовании более или менее устойчивых ассоциатов и при кратковременных столкновениях молекул. В данной задаче рассматриваются некоторые методы изучения обоих типов этих взаимодействий.  [c.161]

Константы скорости К] и представляют собой коэффициенты пропорциональности, учитывающие полноту столкновения молекул и их взаимную ориентацию в момент соударения.  [c.213]

Среди реакций, возникающих при столкновении молекул различных веществ, особо следует выделить реакции термической диссоциации.  [c.214]

Химические реакции осуществляются в результате взаимных столкновений молекул. Скорость реакции на основании закона действуюш,их масс зависит от концентрации реагирующих молекул, а следовательно, и числа столкновений, причем чем больше концентрация, тем больше будет столкновений. Однако в реакциях, протекающих с конечной скоростью, не все столкновения молекул приводят к химическому взаимодействию. Эффективными будут только те столкновения между молекулами, которые в момент столкновения обладают некоторым избытком внутренней энергии и при встрече их может выделиться энергия, необходимая для разрушения химических связей. Этот избыток энергии, необходимый для проведения данной реакции, называется энергией активации. Причина того, что топливо (бензин, керосин и т. п.) не загорается само собой, заключается в значительной энергии активации соответствующих окислительных реакций. Повышение температуры приводит к тому, что все чаще и чаще молекулы окислителя и горючего в момент столкновения имеют необходимый избыток энергии, и в конце концов скорость реакции достигает большой величины — начинается горение. По теории активации к реакции могут привести только столкновения между активными молекулами, энергия которых будет больше энергии активации.  [c.226]


Для бимолекулярной реакции скорость Wg, соответствующая полному числу столкновений молекул, равна  [c.227]

Константа Ь связана с величиной сил отталкивания она имеет размерность объема и характеризует уменьшение свободного объема, в котором движутся молекулы, из-за конечных размеров молекул. В не очень сжатом газе имеют место только двойные столкновения молекул. При столкновении двух молекул вследствие того, что молекулы не могут сблизиться до расстояния (между центрами их), большего диаметра молекулы о, существует объем, который недоступен для сталкивающихся молекул. Этот объем представляет собой сферу диаметром 2й (, (называемую сферой непроницаемости) и равен  [c.199]

Уместно отметить, что для газов, молекулы которых не имеют внутренних степеней свободы (или если последние не успевают возбуждаться при столкновениях молекул, т. е. заморожены ), коэффициент объемной вязкости равен нулю Для многоатомных газов величина имеет тот же порядок, что и ц, а для жидкостей может быть больше ц. Коэффициенты вязкости т] и являются функциями давления и температуры. Однако во многих случаях изменение ц и в потоке жидкости столь незначительно, что они могут считаться постоянными величинами и вследствие этого выносятся за знак производной.  [c.363]

Описанные выше собственные колебания молекулы СО2 используются в газовом лазере на углекислом газе. Упрощенная схема энергетических уровней молекул СОа и азота Na, входящих в состав газовой смеси лазера, приведена на рис. 8.4. Электронный поток газового разряда возбуждает с большой эффективностью колебания, соответствующие наинизшему уровню молекул азота Еу. Частота этих колебаний близка к частоте соа антисимметричных колебаний молекулы Oj. В результате неупругого столкновения молекул Na и СОа происходит возбуждение антисимметричного колебания СОа и молекула переходит на энергетический уровень а- Этот уровень метастабилен. С него возможны переходы на более низкий возбужденный уровень симметричного колебания 3 и второй возбужденный уровень деформационного колебания 4. Уровни 3 и 4 близки, между ними в результате неупругого взаимодействия молекул существует сильная связь. Деформационные колебания молекулы СО легко передают свою  [c.293]

Для того чтобы получить выражения для правых частей (1.2.2) и (1.2.3), которые называют столкновительными членами, необходимо знать механизм столкновения молекул.  [c.11]

Рис. 1.3.1. Столкновение молекул (модель абсолютно твердых сфер) Рис. 1.3.1. Столкновение молекул (модель абсолютно твердых сфер)
Гульбрансеном, Эндрю и Брассаром, показали, что чем выше температура, тем ближе можно подойти к окислению, срсорость которого определяется столкновениями молекул газа с поверхностью металла, т. е. подвижной адсорбцией окислителя. Условия, при которых протекает реакция окисления при возвращении в атмосферу Земли из космоса, могут привести к скоростям окисления, близким к тем, которые дает теория столкновений.  [c.136]

Различие уравнений идеального газа и вириального разложения об Ъясняется существованием сил взаимодействия между молекулами. Вывод уравнения состояния с учетом всех взаимодействий между молекулами газа приводит, естественно, к полиному по степеням плотности. Второй и последующие коэффициенты полинома описывают эффекты, возникающие при столкновении молекул газа. Второй коэффициент учитывает суммарный вклад всех парных взаимодействий между молекулами, третий вклад взаимодействий между тремя молекулами, четвертый — между четырьмя и т. д. Очевидно, что вычисление коэффициентов становится очень трудной задачей, если учитывать столкновение более чем двух молекул. Для задач, связанных с термометрией, вклад третьего и последующих членов в вириальном разложении достаточно мал и им можно пренебречь, за исключением области самых низких температур.  [c.77]

На практике в газовой термометрии длина свободного пробега молекул газа редко совпадает с диаметром соединительного капилляра (обычно это трубка с заметными размерами) и, таким образом, нарущаются условия, при которых выведена формула (3.32). Вместо нее используется значительно более сложное выражение, в которое входят диаметр трубки, коэффициент аккомодации, учитывающий столкновения молекул со стенкой трубки, молекулярный вес газа и его вязкость. Общее выражение для термомолекулярной разности давлений было впервые получено Вебером и Шмидтом [71]. Последующие работы в этой области как теоретические, так и экспериментальные [49, 62] показали, что термомолекулярная разность давле-  [c.95]

Считая молекулы жесткими шарами диаметром вычислить. константу Ван-дер-Ваальса Ь. Газ считать достаточно разреженным и учитьтать только парные столкновения молекул.  [c.68]

Процесс распространения сжатия или разрежения в газе происходит в результате столкновений молекул газа, поэтому скорость распространения звука в газе примерно равна скорости теплового движения молекул. Средняя скорость теплового движения молекул уменьшается с понижением температуры газа, поэтому уменьшается с понижением температуры газа и скорость распространения звука. Например, в йодороде при понижении температуры от 300 до 17 К ско-  [c.223]


Переход молекулы в электронное возбужденное еостояние может происходить различными путями. Возбуждение наступает в результате столкновения молекулы с быстроко-леблющпмися частицами, получившими энергию в результате общего нагревания тела, при поглощении кванта видимого или ультрафиолетового света, при соударении с электронами и иными быстродвижущимися заряженными частицами, а также в ряде других случаев. Возбужденные частицы обычно быстро (за время, из.черяемое миллиардными долями секунды) теряют свою избыточную энергию и переходят в основное невозбужденное состояние. Такой переход может совершиться безызлучательным путем, когда энергия передается окружающим частицам в виде тепла, или с испусканием света. Явление испускания света веществом при его возбуждении различными внешними воздействиями называется люминесценцией.  [c.246]

При очень больших значениях числа Кнудсена (К>1) пограничный слой у поверхности тела не образуется, так как ре-эмитированные (отраженные) поверхностью тела молекулы сталкиваются с молекулами внешнего потока на далеком от него расстоянии, т. е. тело не вносит искажений в поле скоростей внешнего потока. Для этого режима свободно-молекулярного течения газа , который по имеющимся данным наблюдается при M/R > 3, трение и теплообмен на поверхности обтекаемого тела рассчитываются из условия однократного столкновения молекул газа с поверхностью.  [c.133]

Если газ сильно разрежен, то столкновения молекул между собой и с поверхностью тела настолько редки, что реэмитируе-мые поверхностью молекулы практически не возмущают набегающий на тело невозмущенный поток газа и не нарушают максвелловского распределения хаотических скоростей и, V, w) молекул в этом газе. Функция распределения Максвелла согласно (58) может быть представлена в виде  [c.154]

Соотношение (1.1) получено для простой модели, где молекулы газа можно рассматривать как твердые упругие шарики незн ячитель-ного размера, силы притяжения между которыми отсутствуют, а силы отталкивания появляются только при непосредственно столкновении молекул друг с другом или молекулами стенок сосуда.  [c.13]

В этой реакции при столкновении молекулы окиси углерода с молекулой водяного пара атом кислорода отрывается от молекулы пара и присоединяется к молекуле окиси углерода, образуя молекулу углекислоты. По мере протекания реакции количество исходных веществ уменьшается, следовательно, столкновений молекул исходных веществ делается все меньше и скорость реакции уменьшается. Но с другой стороны, увеличивается количество полученной углекислоты и водорода, увеличивается количество сюлкно-  [c.209]

Если учесть, что радиус молекулы Н2О составляет 2,29. 10 см, а радиус зародышевой капли при t= 52° С равен в среднем 5,8- 10" см, то станет ясно, что центрами конденсации водяного пара являются скопления в 10—15 молекул. Это обстоятельство отчасти объясняет, почему формула для р/ра, основывающаяся на уравнении Ван-дер-Ваальса, приводит к правильным значениям предельной степени пересыщения. Действительно, так как зародыши представляют собой небольшие скопления молекул, причем число зародышей становится заметным лишь при предельной степени пересыщения, то во нсей области от точки насыщения до точки предельного пересыщения в пересыщенном паре отсутствуют сложные столкновения молекул (иначе говоря, группы, состоящие из значительного числа молекул, не образуются) и пересыщенный пар можно с достаточной степенью приближения рассматривать как газ, подчиняющийся уравнению Ван-дер-Ваальса (а при достаточно малых давлениях и уравнению Клапейрона—Менделеева).  [c.238]

Относительные движения комнонеит, описываемые диффузионными скоростями или диффузионными потоками piW.- и непосредственно влияющие лишь на концентрацию компонент р /р, определяются диффузионным механизмом (столкновения молекул при их хаотическом движении). Законы диффузии (в том числе тер-мо- и бародиффузии) устанавливают зависимость (как правило линейную) для мгновенных значений piW в зависимости от градиентов концентраций компонент, градиентов температуры и давления. Используя эти законы диффузии, мы пренебрегаем инерцией относительного движения компонент.  [c.25]


Смотреть страницы где упоминается термин Столкновение молекул : [c.23]    [c.295]    [c.193]    [c.74]    [c.204]    [c.670]    [c.139]    [c.77]    [c.89]    [c.130]    [c.243]    [c.344]    [c.357]    [c.10]   
Динамика разреженного газа Кинетическая теория (1967) -- [ c.14 ]

Молекулярное течение газов (1960) -- [ c.15 , c.23 ]



ПОИСК



Вероятность переходов при столкновениях молекул, обладающих внутренними

Классификация столкновений электронов с атомами. Поперечное сечение Средняя длина свободного пробега Экспериментальное определение поперечного сечения упругого столкновения электрона с молекулами. Эффект Рамзауэра и Таунсенда. Интерпретация эффекта Рамзауэра- Таунсенда Волны де Бройля

ЛАВА I МОЛЕКУЛЫ СУТЬ УПРУГИЕ ШАРЫ. ВНЕШНИЕ СИЛЫ И ВИДИМЫЕ ДВИЖЕНИЯ МАСС ОТСУТСТВУЮТ Максвелловское доказательство закона распределения скоростей. Частота столкновений

МОЛЕКУЛЫ ОТТАЛКИВАЮТСЯ С СИЛОЙ, ОБРАТНО ПРОПОРЦИОНАЛЬНОЙ ПЯТОЙ СТЕПЕНИ РАССТОЯНИЯ Выполнение интегрирования в членах, связанных со столкновениями

Молекулы и молекулярные ионы столкновение с электронами

Наиболее общий случай столкновения двух молекул

Процессы тушения возбужденных атомов и молекул при столкновениях с тяжелыми частицами

Столкновение молекул обратное

Столкновения

Столкновения двух молекул

Столкновения между молекулами с центральными силовыми полями

Учет протяженности молекул при подсчете числа столкновений



© 2025 Mash-xxl.info Реклама на сайте