Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Неорганические диэлектрики

П6.1. в электро-и радиоэлектронной промышленности широко применяются различные электроизоляционные материалы неорганические диэлектрики, пленки, пластмассы и т. д.  [c.269]

На рис. 2-30 наглядно видно тепловое воздействие при электротепловом пробое образца каменной соли, пробитого в двух местах. Одно место пробоя имело форму выплавленной воронки, второе выплавилось в значительных размеров отверстие. Иногда при электротепловом пробое кристаллических неорганических диэлектриков происходит незначи-  [c.76]


Важной радиационной характеристикой диэлектрика является время установления величины Ор и ее уменьшения до нуля мосле окончания облучения. Для неорганических диэлектриков это время при 293 К (20 °С) составляет единицы-десятки, для органических — тысячи — десятки тысяч секунд.  [c.147]

Старение неорганических диэлектриков протекает более интенсивно на постоянном напряжении. В процессе ионной электропроводности происходит перенос ионов, т. е. вещества, что приводит к необратимому изменению химического состава материала в объеме образца или изделия. Поэтому др диэлектрика может уменьшить-  [c.181]

Неорганические диэлектрики аморфной структуры, не содержащие полярных групп. К ним относятся, прежде всего, неорганические стекла, которые характеризуются ионно-релаксационной поляризацией. Диэлектрическая проницаемость стекол значительно зависит от их химического состава и температуры в пределах е = 3,8 -ь 20.  [c.12]

Из неорганических диэлектриков наибольшую стойкость проявляют следующие кварц, слюда, глинозем, окись циркония, окись бериллия и слюдяные материалы со стекловидным связующим, хотя р и р  [c.46]

Третью группу составляют твердые неорганические диэлектрики с электронной, ионной и ионно-электронно-релаксационной поляризациями. В этой группе целесообразно выделить две подгруппы материалов ввиду существенного различия их электрических характеристик  [c.22]

В качестве примера в табл. 5-2 приведены средние ТК I некоторых электроизоляционных материалов при температуре 20—100 °С. Как видно из табл. 5-2, органические диэлектрики имеют резко повышенные ТК I по сравнению с неорганическими диэлектриками. Поэтому детали, изготовленные из неорганических материалов, имеют улучшенную стабильность размеров при колебаниях температуры.  [c.85]

Химическое никелирование неметаллических материалов (пластмасс и неорганических диэлектриков)  [c.34]

Подготовка поверхности неорганических диэлектриков К неорганическим диэлектрикам относятся керамика, стекло фарфор слюда ситаллы ферриты Металлизацию неорганических диэлектриков применяют для придания поверхности деталей свойств металла электропроводности способности к пайке, теплопроводности Металлизацию стекла используют для получения зеркал Силикатные материалы (стекло кварц ситаллы, слюда и т п ) подвергают сначала химическому обезжириванию а затем обработке в хромовой смеси и в растворе плавиковой кислоты  [c.37]

Известно, что поверхностная проводимость многих неорганических диэлектриков и полупроводников является функцией относительной влажности воздуха или, другими словами, толщины адсорбированного слоя влаги [56]. Например, не только поверхностная проводимость, но и удельная проводимость воды на свежеобразованном слое слюды зависит от толщины адсорбированной пленки влаги [54, с. 105].  [c.51]


Сплавы с заданным а широко применяют в машиностроении и приборостроении. Сплавы с минимальным а (близким к нулю) используют для деталей и измерительных приборов, расширение которых должно быть исключительно малым при колебаниях климатических температур. Тепловое расширение сплавов с низким и средним а хорошо согласуется в большом интервале температур с расширением других материалов, таких как неорганические диэлектрики (стекла и керамики), чугун и др.  [c.294]

Благодаря согласованности расширения, высокой пластичности и надежному сцеплению между сплавами с заданным а и соответствующими неорганическими диэлектриками их применяют для различных конструкций вакуумноплотных спаев.  [c.294]

Сплавы с определенными заданными коэффициентами теплового расширения в интервале рабочих температур (—70 +500 °С и выше), обычно близкими или равными по величине соответствующим коэффициентам теплового расширения соединяемых с ними материалов. Обычно эти сплавы служат для соединения с неорганическими диэлектриками (стеклом, керамикой, слюдой, искусственным сапфиром и т. д.), создавая вакуумноплотные спаи элементов приборов и различной аппаратуры.  [c.313]

Особое место занимают сплавы с малым коэффициентом линейного расширения, существенно не меняющимся в высокотемпературной области. Эти сплавы предназначены для изготовления деталей измерительных приборов и технических средств. Промышленное значение имеет сплав инвар на базе железа и никеля (36%) с небольшим количеством углерода (0,05%). Для этого сплава а= (1...1,5) 10 ° i, причем изменение величины коэффициента при температурах 600...700°С происходит очень плавно за счет ферромагнитного эффекта. Эти сплавы используют для изготовления деталей, впаиваемых в неорганические диэлектрики — стекло, керамику, слюду и др.  [c.182]

Резкий рост электрического тока при неизменном напряжении показывает, что компенсация акцепторов заканчивается, ио концентрация доноров продолжает нарастать. Отметим, что если после второго этапа старения напряжение выключить, то через некоторое время первоначальные свойства диэлектрика восстанавливаются. Эта регенерация свойств значительно ускоряется нагреванием диэлектрика, а также при приложении к нему электрического поля противоположной полярности. По этой причине электрическое старение неорганических диэлектриков не происходит при переменном напряжении.  [c.58]

Ионные связи обусловлены кулоновским притяжением противоположно заряженных ионов. Такие связи наиболее характерны для неорганических диэлектриков, имеющих в своем составе ионы противоположных знаков, например Ыа —СГ, —Р".  [c.9]

Наиболее стойкие к облучению неорганические диэлектрики кварц, слюда, глинозем, окись циркония, окись 112  [c.112]

Слюда — неорганический диэлектрик, В табл. 23.18 приведены свойства важнейщцх видов слюды. Миканиты — клееные листовые материалы на основе слюды, которые могут иметь и волокнистые подложки. В табл. 23.19 приведены свойства некоторых видов миканитов и микалекса (пластмассы на основе слюды). Заменителями миканитов являются материалы из слюдяных бумаг — слю-диниты и слюдопласты свойства некоторых нх видов приведены в табл. 23.20. Слюдинитовая бумага получается из отходов слюды мусковит, а слюдопластовая — из отходов слюды флогопит.  [c.557]

В дальнейшем была установлена возможность получения электретов из неполярных органических и даже не неорганических диэлектриков, в частности керамических. Необходимое для этого условие поляризации сводится к длительному воздействию сильного постоянного электрического поля при повышенной температуре. В сравнительно слабых поляризационных полях получаются при этом электреты с гетерозарядами, а в сильных — с гомозарядами. Плотность зарядов достигает обычно значений порядка 10 Кл/м , но при соблюдении некоторых специфических условий можно получить электреты с большей плотностью зарядов.  [c.42]

Очаги внутренней ионизации в порах действуют разрушающим образом на твердый, основной компонент изоляции за счет бомбардировки ионами и электронами, вызывающими эрозию, за счет теплового воздействия и воздействия озона ичжислов азота. Разные материалы проявляют различную стойкость против этих воздействий. Как правило, неорганические диэлектрики проявляют большую стойкость, чем органические, довольно сильно отличающиеся в этом отношении друг от друга. При ионизационном пробое начальной стадией является ионизация в порах (внутренняя корона), второй — завершающей — разрушение диэлектрика под  [c.84]


Гигроскопичность диэлектриков зависит от их структуры и состава. Неполярные органические диэлектрики, например парафин, полиэтилен, полипропилен, обладают очень малой гигроскопичностью, почти не поглощают влаги из возду а и даже при длительном пребывании во влажной среде сохраняют хорошие диэлектрические свойства. Полярные диэлектрики обладают обычно большей гигроскопичностью, причем закрепление полярных молекул воды около полярных групп молекул диэлектрика замедляет поглощение влаги и равновесное состояние (предельное влагопоглоще-ние) наступает в них за большее время, чем у неполярных. Некоторые вещества, поглощая влагу, образуют с ней твердый коллоидный раствор — набухают. У таких диэлектриков (например, целлюлозные материалы) влагопоглощение может быть очень большим и вызывать сильное ухудшение электрических параметров. Наличие в диэлектриках водорастворимых составных частей и солей повышает их гигроскопичность. Многие неорганические диэлектрики, обладающие плотной структурой, например стекло, непористая керамика, практически не обнаруживают объемного поглощения воды. Проникновение влаги в диэлектрик может происходить через имеющиеся в нем поры. По своему характеру пористость может быть открытой в виде каверн на поверхности закрытой — в виде внутренних воздушных пустот, не сообщающихся с окружающей средой сквозной — в виде каналов, пронизывающих диэлектрик насквозь. Наибольшее влияние на электрические параметры оказывает влага, попадающая в сквозные поры. Конденсируясь на их стенках, вода образует сплошные пленки повышенной проводимости. Имеют значение и размеры пор, которые могут быть разными от макроскопических до суб-микроскопических размером (5—10)-10 см.  [c.110]

Магнитодиэлектрики. Это такие материалы, которые состоят из конгломерата частиц низкокоэрцитивного магнитного материала, изолированных между собой органическим или неорганическим диэлектриком, который играет роль и связующего элемента. Благодаря тому что частицы ферромагнитной фазы изолированы, магнитодиэлектрики обладают высоким удельным сопротивлением и малыми потерями на вихревой ток, но имеют пониженное значение магнитной проницаемости. Кроме того, магнитодиэлектрики характеризуются незначительными потерями на гистерезис и высокой стабильностью проницаемости.  [c.99]

Механизмы электрохимического пробоя ра ).1ичаклся и органических и неорганических диэлектриках.  [c.181]

Поверхностчый искровой разряд существенно не повреждает поверхность неорганических диэлектриков. Однако при мощном дуговом разряде происходит оплавление приповерхностных слоев даже фар( ровых изоляторов, а поверхность органических диэлектри- ков обугливается и на ней образуется сплошной проводящий след.  [c.183]

При длительном использовании электроаппаратуры, особенно и тропических условиях, на органических диэлектриках развивгется плесень. Появление плесени уменьшает удельное поверхностное сопротивление диэлектриков, приводит к росту потерь, может снизить механическую прочность изоляции и вызвать коррозию соприкасающихся с ней металлических частей. Плесень развивается чаще всего в канифоли, масляных лаках, целлюлозных материалах, Бг том числе и в пропитанных (гетинакс, текстолит). Наиболее стойкими к образованию плесени являются неорганические диэлектрики ь ерамика, стекло, слюда, кремнийорганические материалы и некоторые органические, например эпоксидные смолы, фторопласт-4, полиэтилен, полистирол.  [c.77]

Нагревостойкость. Способность диэлектрика выдерживать воздействие повышенной температуры в течение времени, сравнимого со сроком нормальной эксплуатации, без недопустимого ухудшения его свойств. В зависимости от значений допустимых в эксплуатации температур диэлектрики различают по классам нагревостойкостн. Нагревостойкость неорганических диэлектриков определяют, как правило, по началу суш,ественного изменения электрических свойств, например, но заметному росту tg б или снижению удельного электрического сопротивления. Нагревостойкость оценивают соответствующими значениями температуры, при которой появились эти изменения. Нагревостойкость органических диэлектриков часто определяют по началу механических деформаций растяжения или изгиба, погружению иглы в материал под давлением при нагреве. Однако и для них возможно определение нагревостойкостн по электрическим характеристикам.  [c.80]

Влияние облучения на неорганические диэлектрики, кварц, слюду, глнноэе.ч, оксид циркония, оксид бериллия и слюдяные материалы со стекловидным связующим — менее сильное. У них о<5разуются центры окрашивания удельное элек-трическое сопротивление и электрическая прочность их могут снизиться.  [c.87]

Кремнийорганические смолы (полиорганосилоксаны, силиконы) В их состав помимо характерного для органических полимеров углерода С входит кремний, являющийся одной из важнейших со ставных частей многих неорганических диэлектриков слюды, ас беста, ряда стекол, керамических материалов и пр. Таким образом эти материалы должны быть отнесены к элементоорганическим (см стр. 105). Основу строения их молекул образует силоксйновая  [c.123]

В отличие от легированных железоникелевых сплавов легированные железохромистые сплавы 18ХТФ и 18ХМТФ имеют объемноцентрированную решетку а-фазы, устойчивую при нагреве до 1200° С и при охлаждении (регламентируется до —50° С). Оба сплава магнитны, отличаются достаточной прочностью и хорошей пластичностью, более высокой коррозионной и окалиностойкостью, чем остальные сплавы для спаев с неорганическими диэлектриками. Кроме того, они не содержат никеля и поэтому более экономичны.  [c.300]

Магнитодиэлектрики из порошков пермаллоя. Наибольшее распространение имеют порошки нелегированного (78- 81 %Ni, 22- 19%Fe) и легированного (81 % Ni, 17% Fe, 2% Mo) пермаллоя с частицами] размером 20- 140мкм, полученные дроблением литых сплавов и прошедшие отжиг при 850 - 980 °С. Изоляцией служат неорганические диэлектрики (2-10 % от массы порошка ферромагнетика). Пресс-порошок прессуют при давлении до 2000 МПа, а затем для снятия наклепа проводят термообработку при высоких температурах.  [c.222]

Сплавы с низким и средним ТКЛР предназначены для вакуумноплотных соединений с неорганическими диэлектриками — стеклом, керамикой, сапфиром, слюдой и т. д. Эти сплавы в интервале температур ниже точки Кюри имеют ТКЛР, близкий к ТКЛР соответствующих диэлектриков (табл. 115), что обеспечивает низкий уровень напряжений в спае.  [c.271]


Для работы в высокочастотных полях в качестве магнитопроводов применяют магнитодиэлектрики и ферриты. Магнитодиэлектрики представляют собой композиционные материалы, состоящие из конгломерата тонкодисперсных низкокоэрцитивных частиц, например, размолотого альсифера, скрепленных прослойками органического или неорганического диэлектрика. Высокое удельное электросопротивление магнитодиэлектрика обусловливает малые потери на вихревые токи и определяет возможность его применения в высокочастотной проводной связи, радиоэлектронике и т.д.  [c.129]

Таким образом, старение неорганических диэлектриков в сильном электрическом поле обусловлено, во-первых, захватом электронов анионными вакансиями (обратимые процессы), а во-вторых, развитием необратимых процессов, подготавливающих инжекцию электронов (или дырок), которая и приводит к электрическому пробою. Непременным условием развития электрического старения, как показано Койковым и сотрудниками [8], является наличие ионной составляющей проводимости. Наиболее интенсивно старение происходит в том случае, когда ионная н электронная составляющие тока примерно одинаковы. Хотя за развитием процессов старения в кристаллах и поликристаллах удается наблюдать по изменению тока со временем, физические процессы электродеградации кристаллов остаются во многих деталях неясны.  [c.59]

Известно, что поверхностная проводимость многих неорганических диэлектриков и полупроводников является функцией относительной влажности воздуха (или толщины адсорбированного слоя влаги [45]). Например, по данным Пе-ревертаева и Мецика [46], не только поверхностная проводимость (стп), но и удельная проводимость (оу) воды на свежеобразованном сколе слюды зависят от толщины адсорбированной пленки (рис. 3).  [c.158]

Полиорганосилоксаны. Органические диэлектрики (гл. 3—6) весьма широко применяются в электроизоляционной технике многие из них имеют хорошие электрические характеристики, удобны в технологическом отношении. Однако общим недостатком органических электроизоляционных материалов (кроме политетрафторэтилена) является их низкая нагревостойкость многие из органических материалов горючи и обладают низкой стойкостью к различным химическим реагентам. Неорганические электроизоляционные материалы, которые рассматриваются в гл. 7 и 8, не имеют в своем составе углерода (наличие которого, как известно, определяет принадлежность вещества к классу органических соединений) зато большинство неорганических диэлектриков содержит в своем составе элемент кремний 51. Неорганические диэлектрики обладают, вообще говоря, весьма высокой нагревостойкостью, однако они тверды и хрупки они более пригодны для изготовления механически прочных, недеформируемых деталей, чем для получения гибкой, эластичной изоляции.  [c.77]

При длительном воздействии напряжения для больщин-ства конденсаторов с органическим диэлектриком, а также для некоторых конденсаторов с неорганическим диэлектриком наблюдается постепенное снижение электрической прочности, продолжающееся в течение ряда месяцев или лет. Этот процесс снижения электрической прочности называется старением.  [c.340]


Смотреть страницы где упоминается термин Неорганические диэлектрики : [c.36]    [c.145]    [c.182]    [c.182]    [c.87]    [c.167]    [c.311]    [c.321]    [c.352]    [c.78]    [c.210]    [c.235]   
Смотреть главы в:

Химия и радиоматериалы  -> Неорганические диэлектрики

Материалы в радиоэлектронике  -> Неорганические диэлектрики



ПОИСК



Возможные способы образования дефектов при электрическом 1 старении неорганических диэлектриков

Диэлектрик

Изменение электропроводности некоторых неорганических диэлектриков в процессе старения и регенерации

Изучение причин электрического старения неорганических диэлектриков

Конденсаторы с твердым неорганическим диэлектриком

Расчет изменения концентрации несвязанных дефектов в процессе старения неорганических диэлектриков

Теплоемкость, коэффициенты теплопроводности и линейного расширения сплавов для спаев с неорганическими диэлектриками

Химическое никелирование неметаллических материалов (пластмасс и неорганических диэлектриков)



© 2025 Mash-xxl.info Реклама на сайте