Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Исследование конечных элементов

Исследование конечных элементов  [c.13]

Приведем конкретные примеры оценки погрешности для различных типов конечных элементов. Своеобразные исследования конечных элементов из чисто физических соображений (проверка совместности элементов, условия жесткого смещения) даны в работе [31]. Приводимые ниже исследования основаны на современном представлении математической сущности МКЭ [45, 69] и используют соотношения (1.12) — (1.19).  [c.13]


Однако изучение работы одного конечного элемента отнюдь не позволяет непосредственно перейти к исследованию работы конструкции в целом, вне зависимости от того, является ли последняя объектом изучения в теории упругости, строительной механике, теории пластичности и т. д. Для перехода к окончательной задаче, в которой конструкция рассматривается как совокупность конечных элементов, необходимо рассмотреть со-  [c.135]

Исследованию подвергались крестообразные модели трех типов со сквозными и поверхностными трещинами на специальных устройствах (рис. 6.17). Модели из сплава АК4-1Т1 с пределом текучести 320 МПа имели толщину 1,2 и 2 мм с центральным отверстием, от которого производилось выращивание сквозной трещины при постоянной асимметрии цикла / = 0,5 в диапазоне соотношения главных напряжений -0,1 < X,(j 5 0,1 при Q = (0,3-0,4) [86]. Модель была оптимизирована методом конечных элементов таким образом, что при ее загрузке по двум осям в центральной зоне поле равномерного двухосного напряженного состояния располагалось в пределах диаметра 20 мм. В указанных моделях выращивали сквозные усталостные трещины от центрального отверстия диаметром 2 мм.  [c.315]

Как уже отмечалось ранее в разделе II, А, использование матричных методов, реализуемых с помощью вычислительных машин, значительно повышает эффективность расчета конструкций. Разработанные к настоящему времени универсальные алгоритмы для метода конечных элементов [2, 49, 84] можно непосредственно применять для расчета рам при соответствующем членении конструкции на элементы и их математическом описании. Эти алгоритмы были использованы для исследования рам при выполнении  [c.146]

Как обсуждалось в разд. IV, А, реализация точных методов обычно требует применения численных методов различных типов. В ранних работах, не обязательно относящихся непосредственно к исследованию композиционных материалов, широко использовался метод конечных разностей до тех пор, пока в обиход не вошел метод конечных элементов. Отметим, что метод конечных разностей был одной из немногочисленных попыток применить прямую аппроксимацию функции напряжений.  [c.223]

Следует отметить, что не было опубликовано ни одной работы по применению метода конечных разностей к специфическим задачам упругопластического анализа композитов. Адамс с соавторами [4], применившие метод конечных разностей в исследовании упругого поведения композиционных материалов, впоследствии при рассмотрении упругопластического поведения перешли к использованию метода конечных элементов (Адамс [1, 2]).  [c.224]


Основная причина отсутствия приложений метода конечных разностей к исследованию упругопластического поведения композитов не связана с механическими свойствами компонентов. Здесь имеют место трудности, носящие скорее геометрический характер и возникающие при любых применениях метода конечных разностей к решению задач в областях с криволинейной границей, т. е. с ограничениями на узлы сетки, лежащие на границе. Эту проблему нельзя обойти дал е при использовании нерегулярной сетки (см. Адамс и др. [4]). Применение же треугольных конечных элементов полностью решает указанную проблему, и именно благодаря этому обстоятельству метод конечных элементов является гораздо более гибким.  [c.224]

В течение последних лет было опубликовано значительное количество работ по применению метода конечных элементов к исследованию упругопластических материалов. Во многих рабо-  [c.224]

Метод конечных элементов в строгой форме (с использованием метода начальных деформаций) к исследованию упруго-пластического поведения композитов впервые применил Фойе [11] более подробно этот метод был изложен в последующей статье Фойе и Бейкера [12]. В сочетании с методом касательного модуля метод конечных элементов был применен Адамсом [1, 2] подробное изложение можно найти в статье Адамса [3].  [c.225]

Машинная программа, составляющая часть упомянутого исследования (Репно и Адамс [30]), позволяет рассматривать сетку с большим количеством конечных элементов. В настоящее время программа позволяет оперировать самое большее с 200 узлами и 350 элементами. Было установлено, что этого количества элементов достаточно для адекватного описания рассматриваемого класса проблем. Более того, программу можно легко усовершенствовать, с тем чтобы использовать массивы больших размеров, ограничиваемые лишь возможностями применяемых ЭВМ и стоимостью машинного времени, необходимого для решения таких больших задач.  [c.227]

Как уже отмечалось в предыдущем разделе, в настоящее время в нашем распоряжении имеется лишь ограниченное количество численных результатов исследования поведения компо-витов большинство из них получено методом конечных элементов. Особый интерес представляют численные результаты, содержащиеся в публикациях Адамса [], 2], а также Фойе и Бейкера [12]. Для того чтобы показать, какого вида информация может быть получена, здесь будут приведены примеры, выбранные из работы Адамса [2].  [c.228]

Эти исследования проводились, главным образом, на двумерных (пластинчатых) образцах, что облегчает аналитическое и экспериментальное исследование. Лишь отдельные работы [11, 25, 47] были выполнены на трехмерных системах с цилиндрической симметрией, однако в этом случае трудности оценки влияния геометрических параметров еще более возрастают. В качестве основного экспериментального метода при этом применялся анализ напряжений методом фотоупругости, а в теоретических исследованиях широко (но не исключительно) использовались методы конечных элементов.  [c.62]

При исследовании таких материалов необходимо учитывать это обстоятельство. Можно воспользоваться аналитической методикой, изложенной в разд. 3.2, в основе которой лежит метод конечных элементов, учитывающих нелинейность материала. В настоящей главе будем следовать этой методике.  [c.83]

Четвертое направление объединяет работы, в которых используются различные приближенные методы. Их можно разделить на пять групп. В первую входят исследования с применением конечно-разностных методов в их различной трактовке. Так, например, в [4, 31, 33, 145, 169, 171, 182, 235] исходные дифференциальные уравнения заменяются разностными с последующим решением полученной системы алгебраических уравнений на -ЭЦВМ. В ряде случаев целесообразно предварительно свести задачу к обыкновенному дифференциальному уравнению, которое затем решается численно [53, 57]. Возможно также использование методов конечных элементов [133] и коллокаций [8, 104, 105]. Здесь необходимо отметить, что, кроме изучения сходимости этих методов, следует иметь в виду устойчивость вычислительного процесса [6]. Как показывают последние исследования, это условие является весьма существенным при реализации численных методов на ЭЦВМ.  [c.42]


Отсутствие аналитических решений для нелинейных задач статики и динамики конструкций АЭУ, описываемых уравнениями (3.40)-(3.50), обусловили широкое использование численных методов, ориентированных на применение современных ЭВМ, и главным образом метода конечных элементов (МКЭ). Многочисленные задачи, возникающие в процессе проектирования АЭС, начиная от физики реакторов, гидродинамики и теплообмена и до разнообразных задач динамики конструкций, исследования их прочности и разрушения с учетом взаимодействия с физическими полями различной природы, решаются в настоящее время этим методом [45]. Однако наибольшее применение МКЭ получил в уточненных расчетах напряженных состояний, возникающих в элементах конструкции АЭУ при эксплуатационных, аварийных и сейсмических воздействиях.  [c.104]

При наличии концентратора напряжений, вызванного резким изменением геометрии, дополнительное местное повышение деформаций может быть определено численно методами, учитывающими объемный характер упругопластического деформирования, например методом конечных элементов с вычислением переменных параметров упругости. Использование указанного метода позволяет при зтом существенно ограничить рассматриваемую зону конструкции с концентратором деформаций и определить граничные условия для уточненного расчета или экспериментального исследования этой зоны.  [c.215]

Истинные методы конечных элементов отличаются от подходов, в которых рассматривается разбиение масс, главным образом тем, что при разбиении конструкции жесткости элементов определяются посредством классических способов статических исследований самих элементов, а не в процессе идентификации конструкции [1.40—1.46]. На рис. 1.12, а показано несколько обычно используемых типов элементов. Каждый элемент определяется с помощью 6, 8, 16 или 20 точек или узлов, в которых задаются условия совместности для перемещений и нагрузок. Исходными переменными являются пространственные перемещения в этих узлах уравнения движения обычно записываются с помощью того или иного вариационного подхода. Энергия деформаций, вычисляемая для каждого элемента, выражается через все узловые перемещения каждому узлу приписывают некоторую массу, и кинетическую энергию выражают через узловые скорости. Поскольку разбивка на элементы производится с учетом геометрии конструкции, отпадает необходимость в процедуре задания жесткостей, а соответствующие члены уравнений вычисляются из непосредственного рассмотрения геометрии каждого элемента. Для адекватного представления сложной конструкции необходимо большое число узлов, поэтому главными вопросами в методе конечных элементов являются  [c.38]

В другом подходе, основанном на применении метода конечных элементов к исследованию колебаний конструкций при вязкоупругом демпфировании, были построены специальные элементы, позволяющие получать прямые решения уравнений движения сложных конструкций. Программы были специально созданы для исследования динамики больших трехмерных конструкций при установившихся колебаниях и предварительном нагружении, и их можно применять для самых различных типов конструкций, включая лопатки турбин с вязкоупругим демпфированием и тонкостенные подкрепленные панели с демпфированием [4.15—4.17].  [c.188]

Ответственные узлы современного энергетического, авиационного и другого оборудования работают в условиях значительных тепловых нагрузок. В связи с этим повышенные требования предъявляются к термоупругим и термопластическим расчетам соответствующих конструкций, которые часто характеризуются сложной геометрией, неоднородностью строения и выполняются из материалов с нелинейными свойствами. Область применения аналитических методов в задачах подобного типа ограничена простейшими случаями поэтому большое значение приобрели численные методы исследования, в частности используемый в настояш,ей работе метод конечных элементов.  [c.149]

Подробное изучение напряженного состояния дисков (наряду с экспериментальными исследованиями) может быть проведено методом конечных элементов [42, 90]. Этот метод позволяет учесть окружную несимметрию из-за взаимодействия диска с лопатками, а также разного рода концентраторы напряжений, включая и эксцентричные отверстия различной конфигурации.  [c.104]

Метод минимакса, который мы выбрали для самосопряженных задач из-за его простотц, применялся рядом авторов при исследовании конечных элементов основные ссылки приведены в [Б 15]. Мы привели более аккуратное доказательство для того, чтобы определить не только степень но также и правиль-  [c.268]

Методы конечных элементов и конечных разностей имеют ряд существенных отличий. Прежде всего методы различны в том, что в МКР аппроксимируются производные искомых функций, а в МКЭ — само решение, т. е. зависимость искомых функций от пространственных координат и времени. Методы сильно отличаются и в способе построения сеток. В МКР строятся, как правило, регулярные сетки, особенности геометрии области учитываются только в околограничных узлах. В связи с этим МКР чаще применяется для анализа задач с прямолинейными границами областей определения функций. К числу традиционных задач, решаемых на основе МКР, относятся исследования течений жидкостей и газов в трубах, каналах с учетом теплообменных процессов и ряд других. В МКЭ разбиение на элементы производится с учетом геометрических особенностей области, процесс разбиения начинается от границы с целью наилучшей аппроксимации ее геометрии. Затем разбивают на элементы внутренние области, причем алгоритм разбие-  [c.49]

Таким образом, предложенный в предыдущей главе метод конечных элементов совпадает, по существу, с методом Ритца. Из общих результатов 2 приложения II следует, что для доказательства сходимости метода при /i = max/г , О достаточно проверить полноту системы функций (4.3) в F последняя проблема сводится к исследованию возможности аппроксимации функции из V кусочно-полиномиальными функциями.  [c.158]


Исходными уравнениями при решении задач, рассмотренных в гл. 4-6, являются уравнения сохранения количества движения, вещества и энергии, записанные в ос-редненном виде для каждого конечного элемента. В конечном элементе предполагается условие идеального перемешивания. На основании исследования численных решений, проведенных в этих главах, разработаны новые принципы конструирования тепломассообменных аппаратов струйного типа, примененных в нефтегазовой и нефтеперерабатывающей промышленности.  [c.8]

Все большее применение при проектировании н аходят композиционные материалы большой толщины, для которых не выполняется предположение о плоском напряженном состоянии. При введении общего, шестимерного пространства напряжений требуются более сложные методы исследования, основанные на уточненных теориях пластин и оболочек, учитывающих трансверсальные касательные и нормальные напряжения, теории упругости, методе конечных элементов (см. табл. 1, п. 1). Соответственно необходим и более общий критерий разрушения.  [c.93]

Более точные методы анализа, такие как новый трехмерный вариант метода конечных элементов, необходимы для анализа сдвиговых эффектов внутри и на границе взаимодействия слоев композиционного материала. Эти методы также полезны при определении истинного напряженно-деформированного состояния образцов, используемых при прочностных испытаниях композиционных материалов, особенно в окрестности опор и захватов, как показано в работе Риззо и Викарио [14]. Пагано и Пайпес [11] установили, что порядок чередования слоев оказывает определенное влияние на прочность композиционного материала. Необходимо продолжить исследования, направленные на более полное описание этого явления.  [c.105]

К исследованию упругопластических материалов впервые прямой метод жесткостей применили Галлагер с соавторами [13], одновременно использовавшие метод начальных деформаций. Хронологический перечень более поздних работ по применению прямого метода хлесткостей с одновременным применением метода начальных деформаций или же метода касательного модуля можно найти в труде Маркала [22]. В большинстве этих работ исследуется распределение напряжений около отверстий, вырезов и прочих разрывов в плоских пластинах, на которые действуют нагрузки, лежащие в плоскости пластины. Предполол<ив, что на месте такого разрыва находится включение той же формы (например, волокно), отличное по своим свойствам от исходного материала, приходим к рассмотрению композиционных материалов. Современное состояние метода конечных элементов описано в очень многих работах, в частности в работе Зенкевича [41].  [c.225]

Таким образом, теория прочности композитов при внеосном растягивающем нагружении развита для случаев, когда либо разрушение происходит не по поверхности раздела, либо разрушение по поверхности раздела учитывается лишь косвенно. При решении более сложной задачи — прямого анализа влияния поверхности раздела на прочность при внеосном нагружении — достигнуто меньше успехов, хотя определенные возможности представляет метод конечных элементов [1]. С помощью теорий, рассматривающих непосредственно поверхность раздела, были предсказаны разумные величины верхнего и нижнего предельных значений поперечной прочности, однако они пока не подтверждены экспериментально. Задача разработки более соверщенного подхода, который позволил бы количественно оценить влияние поверхности раздела на прочность при внеосном нагружении, пока не решена. Ряд проблем возникает из-за трудностей экспериментального определения важных характеристик поверхности раздела, другая группа проблем — из-за того, что неясно, как на основе экспериментальных значений данных характеристик предсказать прочность композита. Это — сложные проблемы драктического и теоретического характера, однако начало их решению может быть положено определением характеристик композита при внеосном растяжении и исследованием разрушенных образцов, что позволяет установить роль поверхности раздела в разрушении композита при растяжении. Результаты ряда таких исследований рассмотрены ниже.  [c.203]

Для исследования напряженного состояния на концах волокон в моделях с одним волокном, запрессованным в матрицу, применялся также метод конечных элементов. Ремедиос и Вуд [59] установили, что результаты, полученные этим методом, хорошо согласуются с данными, полученными другими методами. Согласно расчетам, коэффициент максимальной концентрации сдвиговых напряжений равен 3,5, что находится в пределах значений, показанных на рис. 22.  [c.64]

Для исследования напряженного состояния на поверхности раздела были разработаны аналитические методы. К ним относятся методы механики материалов, классической теории упругости и метод конечных элементов. Метод конечных элементов является наиболее универсальным и охватывает разнообразные граничные условия. Предполагаемая величина концентрации напряжений определяется условиями на поверхности раздела. Теоретические данные показывают, что концентрация касательных напряжений на концах волокон зависит от объемной доли волокна и геометрии его конца. Из этих данных также следует, что радиальное напряжение на поверхности раздела изменяется по окружности волокна и может быть растягивающим или сжимающим в зависимости от характера термических напряжений, а также от вида и направления приложенной механической нагрузки. Следовательно, в обеспечении требуемой адгезионной прочности, соответствующей конкретным конструкциям, существует определенная степень свободы. Наличие пор и влаги на поверхности раздела, так же как и повышение температуры, ослабляют адгезионную прочность, в результате чего снижаются жесткость и прочность композитов. Циклическое нагружение почти не сказывается на онижении адгезионной прочности. Показатель расслоения является критерием увеличения локальных сдвиговых деформаций в матрице и модуля сдвига композита. Этот параметр может быть использован при выборе компонентов материалов с заданной адгезионной прочностью на поверхности раздела, И наконец, следует отметить, что состояние данной области материаловедения  [c.83]

Метод конечных элементов получил значительное раз витие с 1950-х годов, когда появились большие ЭВМ. В на-стояшее время этот метод находит широкое применение при решении различных технических задач, к которым можно отнести задачи сопротивления материалов, гидромеханики, теплотехники, электротехники и др. При рассмотрении конечных элементов используются различные методы метод перемещений, метод напряжений, комбинированный метод и т. д. При исследовании механизма поведения композитов методом конечных элементов обычно ограничиваются анализом двумерной задачи. Ниже будет рассмотрена двумерная задача методом перемещений. Для более детального ознакомления с методом конечных элементов следует обращаться к специальной литературе [3.1, 3.2].  [c.51]


Наиболее точный и естественный подход к исследованию патрубковых зон сосудов давления при всем многообразии условий их нагружения заключается в непосредственном использовании трехмерных расчетных схем, принимая во внимание реальные геометрию сосуда, давления, краевые условия и распределение нагрузок. Такой подход оказывается единственно возможным для адекватного моделирования поведения сосудов давления с отношениями 1/4 сравнительного анализа с предьщущей схемой. Его практическая реализация возможна, как, впрочем, и для осесимметричных схем, лишь с использованием численных методов, ориентированных на применение современных ЭВМ. Наиболее универсальным и эффективным для решения подобных задач оказьшается, как это было отмечено вьпие, метод конечных элементов. Вместе с тем использование МКЭ гщя решения трехмерных задач все еще остается проблематичным, особенно для задач нелинейного деформирования конструкций, когда кривая вычислительных трудностей и необходимого машинного времени поднимается, образно говоря, круче кривых напряжения в зоне концентрации сосудов с патрубками.  [c.122]

В качестве первого примера использования приводимых выше расчетных схем даны результаты исследования напряженного состояния в модели патрубковой зоны сосуда ВВЭР-1000, выполненной в масштабе 1 8 и нагруженной внутренним давлением в 7,5 МПа. Модель имеет двухрядную натру бковую зону со взаимным расположением патрубков, соответствующим натурной конструкции корпуса реактора, и изготовлена по штатной технологии с отбортовкой патрубков. Материал модели - сталь со следующими свойствами = 2,1 10 МПа, /1= 0,3. В силу симметрии модели рассматривается ее 1/8 часть, которая аппроксимирована 89 трехмерными конечными элементами изопараметрического типа с 20 узлами каждый, расположенными в один слой, поскольку поверхность модели существенно превышает ее объем. Использовалось 27 точек интегрирования на каждом элементе, из которых 3 точки по толщине. Конечноэлементная сетка, составленная из указанных элементов, имела сгущение вблизи галтельного перехода патрубка в корпус и показана на рис. 4.2 (выполненном не в масштабе).  [c.123]

Современный, основанный на методе конечных элементов подход является перспективным при исследовании динамических характеристик сложных конструкций, в которых могут возникать колебания различных форм. Многоцелевые пакеты программ NASTRAN, ANSYS и MAR [4.12] давно используются многими исследователями для решения задач о колебаниях конструкций. Обычно метод конечных элементов используется для определения резонансных частот и нормальных форм колебаний. Многие из этих пакетов программ позволяют учитывать в той или иной форме демпфирование. Однако если метод конечных элементов используется для получения количественных оценок влияния вязкоупругих материалов, имеющихся в рассматриваемой конструкции, то следует быть очень внимательным, чтобы не попасть в ловушку. Опасность здесь таят как необозримо большое время расчета на ЭВМ и высокие требования при работе с комплексными числами, характеризующими жесткости, так и чрезмерное упрощение задачи при попытке получить решаемую систему уравнений, поскольку эти уравнения будут неправильно моделировать реальную задачу.  [c.187]

Кяврди X. X., Поверус Л. Ю. Исследование распространения цилиндрических и сферических упругих и термоупругих волн в слоистых средах методом конечных элементов.— В кн. Нелинейные тепловые эффекты при переходных волновых процессах Т.2. Таллин 1973, с. 127—134.  [c.256]

В последние годы численные исследования ползучести оболочек проводятся также методом конечных элементов [89, 94]. Однако для задач осесимметричногс деформирования оболочек рациональнее использовать метод Ритца, применяемый на основе вариационных уравнений смешанного типа, так как напряженно-деформированное состояние оболочек может быть описано достаточно точно относительно небольшим числом координатных функций.  [c.12]

В данной работе иснользована в основном формулировка задачи для динамических моделей с сосредоточенными параметрами, что связано с исследуемым низкочастотным диапазоном колебаний до 100 Гц. Идеи расчленения системы на подсистемы с последующей стыковкой подсистем легко распространить на исследования более широкого диапазона частот. В этом случае необходимо использовать формулировку для систем, состоящих из конечных элементов и систем с распределенными параметрами.  [c.88]

В большинстве задач об определении напряженно-деформированного состояния конструкций, подверженных тепловым воздействиям, можно с высокой точностью пренебречь эффектом связанности и процесс решения разделить на два этапа решение задачи теории теплопроводности и решение упругой или упругопластической задачи с использованием ранее найденных температурных полей. Работы по методу конечных элементов, публикуемые в СССР и за рубежом, носвяш,ены в основном второму этапу исследования. Однако при рассмотрении реальных конструкций часто чрезвычайно важным является детальный расчет полей тепловых нагрузок. В настоящей работе предлагается универсальный с точки зрения практического применения алгоритм решения краевых задач теплопроводности методом конечных элементов этот алгоритм основан на результатах работы [I].  [c.149]

В последние годы использование ЭВМ дало эффективные средства [4, 5] для анализа напряженно-деформированных состояний роторов методами конечных элементов (МКЭ) или вариационно-разностными методами (ВРМ). Следует, однако, заметить, что использование для расчетов ВРМ и МКЭ позволяет определять напряженно-деформированное состояние в основном для осесимметричных конструкций непрерывной формы. Поэтому для зон разгрузочных окон, мест под соплодержатели, а также мест соединения деталей ротора необходимо использовать дополнительные экспериментальные и расчетные исследования локальных напряженных состояний.  [c.123]


Смотреть страницы где упоминается термин Исследование конечных элементов : [c.165]    [c.187]    [c.551]    [c.225]    [c.226]    [c.192]    [c.65]    [c.261]    [c.68]    [c.230]   
Смотреть главы в:

Метод конечных элементов в проектировании транспортных сооружений  -> Исследование конечных элементов



ПОИСК



Конечный элемент



© 2025 Mash-xxl.info Реклама на сайте