Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Методы оценки прочности соединений

Известны два варианта этого метода оценки прочности соединения покрытия с основным металлом. При нанесении одной канавки о прочности соединения можно судить по величине усилия царапания при котором разрушается покрытие. Если вырезается ряд параллельных канавок, то критерием служит расстояние между ними, при котором покрытие начинает отслаиваться.  [c.73]

Л. Методы оценки прочности соединений  [c.134]

Оценка прочности клеевых соединений. Большинство методов и средств НК клеевых соединений позволяет выявлять главным образом дефекты типа непроклея. Очевидно, что оптимальным решением задачи является количественная оценка прочности соединения. При этом непроклеи можно рассматривать как частный случай дефектов с нулевой прочностью.  [c.308]


Метод оценки прочности по величине Характеристического импеданса клея основан на корреляции прочности склеивания с характеристическим импедансом клея [11]. Уменьшение последнего снижает прочность соединения. Характеристический импеданс клея оценивают по коэффициенту отражения УЗК на границе раздела обшивка — клей или (реже) клей — внутренний элемент конструкции. Ко-  [c.308]

КОЛИЧЕСТВЕННАЯ ОЦЕНКА ПРОЧНОСТИ СОЕДИНЕНИЯ МЕТОДОМ ВЫТЯГИВАНИЯ ШТИФТА  [c.55]

Многочисленные попытки практического усовершенствования клеевого метода [109—111] в сочетании с теоретическими разработками, вероятно, позволят в.ближайшее время отнести клеевой метод к наиболее объективным способам оценки прочности соединения покрытия с основным металлом и стандартизировать испытания.  [c.72]

Определение напряженного состояния и концентрации напряжений в резьбовом соединении аналитическими методами теории упругости связано с математическими и техническими трудностями, обусловленными сложностью формы тел болта и гайки, а также граничных условий. Эффективность метода фотоупругости для определения концентрации напряжений в соединении, как показывает анализ работ [8, 13, 63] и др., невелика, что связано с внесением больших погрешностей в форму деталей (особенно по шагу резьбы) при изготовлении моделей эти погрешности искажают действительное поле напряжений в соединении. Поэтому до недавнего времени для оценки прочности соединений использовали в основном данные приближенных расчетов распределения нагрузки и сравнительных усталостных испытаний.  [c.140]

Эхо-метод. Известный метод оценки прочности клеевого соединения основан на корреляции прочности склеивания с характеристическим импедансом клея. Уменьшение последнего снижает прочность соединения. Характеристический импеданс клея оценивают по коэффициенту отражения УЗК на границе раздела обшивка -клей или (реже) клей - внутренний элемент конструкции. Коэффициент отражения определяют по амплитуде первого полупериода эхо-сигнала от границы раздела. Для контроля используют эхо-дефектоскопы, работающие на радиоимпульсах с несущими частотами более 4Д МГц.  [c.275]

РАЗРАБОТАННЫХ РАСЧЕТНЫХ МЕТОДОВ ОЦЕНКИ КВАЗИХРУПКОЙ ПРОЧНОСТИ СВАРНЫХ СОЕДИНЕНИЙ  [c.104]


Ланге Ю. В. О физических основах ультразвукового резонансного метода неразрушающей оценки прочности клеевых соединений. — Дефектоскопия,  [c.322]

В настоящее время, насколько нам известно, отсутствует классификация методик исследования покрытий и материалов с покрытиями. В отдельных монографиях на различном методическом уровне рассматриваются способы оценки свойств собственно покрытий (пористость, прочность соединения с основным металлом, защитные свойства, износостойкость и др.). Однако вопрос влияния покрытий на конструктивную прочность изделия в целом значительно сложнее, чем представляется некоторым авторам, и не может быть решен простым исследованием структуры и свойств только покрытий. По-видимому, композицию основной металл — покрытие следует рассматривать как единое целое. Очевидна необходимость комплексного, всестороннего изучения данной композиции с привлечением современных средств оценки конструктивной прочности, таких как статические, динамические и усталостные испытания, а также испытания на трещиностойкость. Методы испытаний материалов с покрытиями разработаны значительно меньше, чем способы оценки свойств собственно покрытий. В предлагаемой нами классификации методик исследования структуры и физико-механических свойств (рис. 2.1) выделено два крупных раздела испытание покрытий и испытание материалов с покрытиями.  [c.13]

ЛИЙ, работающих в экстремальных условиях (например, при —50°С), при форсированных режимах динамического, статического и циклического нагружений, при наложении абразивного изнашивания, при воздействии агрессивных сред и т. д. Поэтому наряду с традиционными испытаниями необходимо комплексно использовать такие методы исследования, как акустическая эмиссия, количественный анализ продуктов изнашивания, непрерывная регистрация структурных изменений в зоне контакта металла с покрытием при работе в паре трения с учетом воздействия окружающей среды на разрушение. Для изучения структуры композиции покрытие — основной металл следует шире привлекать стереологию, рентгеноспектральный микроанализ, ядерный гамма-резонанс, радиоспектроскопию. Принципы механики разрушения должны применяться не только для оценки трещиностойкости, но и для вычисления величины износа при абразивном изнашивании, а также учитываться при расчетах при теоретическом прогнозировании прочности соединения покрытия с основным металлом.  [c.193]

Разработан ряд прямых методов измерения характеристик напряженного состояния на поверхности раздела и адгезионной прочности. Поляризационно-оптический метод волокнистых включений наиболее надежен при определении локальной концентрации напряжений. Испытания методом выдергивания волокон из матрицы пригодны для измерения средней прочности адгезионного соединения, а методы оценки энергии разрушения — для определения начала расслоения у концов волокна. Прочность адгезионной связи можно установить по результатам испытаний композитов на сдвиг и поперечное растяжение. Динамический модуль упругости и (или) логарифмический декремент затухания колебаний применяются для определения нарушения адгезионного соединения. Динамические методы испытаний и методы короткой балки при испытаниях на сдвиг обычно пригодны для контроля качественной оценки прочности адгезионного соединения и определения влияния на нее окружающей среды.  [c.83]

В последние годы весьма широкий круг исследований (см. [84—85, 87, 88]) выполняется по оценке влияния дефектов сварки и концентрации технологических пластических деформаций на хрупкость сварных соединений и достоверность методов оценки хрупкости. Установлено, что, несмотря на удовлетворительное исходное состояние основного металла, сваркой можно получить крайне низкий уровень прочности и пластичности соединений.  [c.55]


Приведенный выше инженерный метод расчета малоцикловой прочности в номинальных напряжениях требует достаточно сложных экспериментальных исследований на натурных узлах и соединениях конструкций в зависимости от целого ряда факторов вида и способа нагружения, характеристик цикла, температуры, технологии изготовления и т. п. В связи с этим упомянутый выше расчет по местным деформациям (см. гл. 1 и 11) является более универсальным, так как он основан на результатах испытаний лабораторных образцов, используемых для оценки прочности конструкций в зонах концентрации напряжений. Применимость деформационных подходов к расчету сварных конструкций определяется наличием данных по теоретическим коэффициентам концентрации напряжений в сварных швах, циклическим свойствам материала различных зон сварного соединения и по уровню остаточных сварных напряжений. В 2 приведены предложения по определению коэффициентов концентрации напряя ений и деформаций в стыковых и угловых швах листовых конструкций. Для стержневых конструкций, выполняемых из фасонного проката, необходимы дополнительные исследования напряжений и деформаций в зонах их концентрации. Свойства строительных сталей при малоцикловом нагружении изучены достаточно подробно, и по ним получены величины параметров для построения расчетных кривых  [c.189]

Предел прочности, характеризующий наибольшую несущую способность, является важным критерием работоспособности соединений. Методы оценки (испытания) прочности резьбовых соединений обусловлены особенностями их нагружения в реальных конструкциях.  [c.134]

Большинство методов оценки адгезионной прочности лакокрасочных покрытий основано на механическом разрушении соединения на границе покрытие-подложка. Это разрушение может  [c.61]

Положение пика растягивающих остаточных напряжений в зоне термического влияния (ЗТВ) соответствует местам образования трещин при проведении отжига. При этом с ростом толщины основного металла пик растягивающих остаточных напряжений увеличивается. Результаты исследований величины и характера распределения остаточных напряжений в биметаллах, изготовленных методом совместного деформирования, приведены в работах [4,9-10]. Наличие остаточных напряжений и исходной дефектности следует учитывать при оценке прочности биметаллических материалов и конструкций и их сварных соединений.  [c.109]

Работоспособность сварных соединений паропроводов ТЭС в зарубежной теплоэнергетике оценивается с помощью различных методов испытаний с установлением при необходимости жаропрочных свойств, циклической прочности, трещиностойкости при ползучести и других характеристик. Применительно к паропроводам энергетических установок, эксплуатирующихся в стационарном режиме (суммарное число пусков-остановов не превышает 400 циклов), основным и наиболее распространенным разрушающим методом диагностирования сварных соединений является оценка их долговечности по результатам лабораторных испытаний цилиндрических гладких образцов с поперечным швом на длительную прочность.  [c.170]

При расчете по фактическим нагрузкам и фактической долговечности стали и сварных соединений суммируются достоинства каждого из методов, рассмотренных в 4.3, в результате чего достоверность в оценке индивидуального ресурса может быть наиболее высокой и достигать уровня КД = 70 %. Сроки индивидуального ресурса устанавливаются из результатов сопоставления t, , оцененных по фактическим нагрузкам, с диаграммой фактической долговечности стали с зачетом фактических значений коэффициента прочности сварного соединения для условий ползучести. Таким образом, этот методический подход может считаться наиболее эффективным из рассмотренных выше расчетных методов оценки ресурса.  [c.234]

Паяные соединения должны обладать необходимой прочностью, коррозионной устойчивостью, герметичностью, жаропрочностью, жаростойкостью, устойчивостью к вибрациям и др. Для определения столь разнообразных и часто противоречивых свойств необходимо выбрать методы исследования, обеспечивающие всестороннюю Оценку паяных соединений.  [c.223]

К методам группы В относятся реверберационный метод, способ оценки прочности склеивания по изменению коэффициента отражения от клеевого щва и метод контроля прочности клеевых соединений путем пз.мерения резонансных свойств нагруженного на изделие пьезоэлемента. Первые два метода являются вариантами эхо-метода, третий — резонансного. Области применения методов указаны в табл. 27.  [c.256]

Основное внимание в книге уделено методам оценки изменений структуры и механических свойств сварных соединений. В соответствующих разделах кратко рассмотрены вопросы теории фазовых и структурных превращений, технологической прочности при сварке, различных видов хрупкого разрушения сварных соединений. Сформулированы критерии оценки свариваемости, на основе которых выбирают способы, технологию и режимы сварки.  [c.2]

Метод оценки критических условий образования холодных трещин [5.3]. Образцы из основного металла электролитическим путем насыщают водородом и непосредственно после насыщения нагревают по циклу околошовной зоны. По достижении комнатной температуры образцы подвергают статическому нагружению и выдерживают в состоянии нагружения длительное время. Определяют прочность и пластичность разрушенных образцов для ряда термических циклов и концентраций водорода. Критическими условиями считают те, при которых разрушающее напряжение ниже, чем у исследуемого материала в состоянии поставки. Параметрами критических условий служат скорость охлаждения при 300° С и концентрация водорода в образце. Метод не позволяет оценить поведение реальных сварных соединений, поскольку в образцах отсутствует литая зона, т. е. не учитывается взаимодействие между наплавленным металлом и металлом околошовной зоны. Помимо этого, представляется весьма спорным определение критических условий образования трещин путем сопоставления свойств материала в состоянии поставки и после обработки по циклу околошовной зоны.  [c.164]


С целью уточнения расчетных методов оценки прочности и ресурса шпилечных соединений энергетических аппаратов (см. гл. 2) были проведены исследования сопротивления статическому и циклическому деформированию и разрушению на модельных соединениях (образцах) М24 х 1 (шпилька основного разъема из стали 25Х1МФ) и М24хЗ (шпилька фланцевого разъема из стали ХН35ВТ) [8, 14].  [c.203]

Из указанных методов испытаний наиболее широко прршеняют первый, отличающийся простотой и точностью. Его использование для определения наибольшей несущей способности особенно целесообразно для динамически нагруженных соединений, так как под действием переменных нагрузок касательные напряжения от крутящего момента в резьбе при затяжке постепенно исчезают, Второй метод испытаний применяют для оценки прочности соединен и й, р аботающих преимущественно на затяжку (например, болтовые соединения в мостовых конструкциях и  [c.134]

В связи с этим большой интерес представляют исследования, посвященные анализу прочности сварных соединений гфи двухосном нагружении. В частности, в /46/ предложен метод оценки механических свойств сварных соединений тонкостенных сосудов давления путем гидростатического выпучивания атоских образцов и цилиндрических обечаек. закрепленньрс по контуру. Требуемое соотношение компонент напряженного состояния п = 02 / а I в испытываемых образцах достигалось выбором соответствующего контура отверстия в матрице установки. При испытании выпу чиванием образцы располагались таким образом, чтобы шов был симметричен относительно кромок отверстия. Прочность сварного соединения по предлагаемой методике оценивалась косвенно по величине напряжений в основном металле в момент разрушения соединения.  [c.82]

Твердость оценивается сопротивлением, которое одно тело оказывает проникновению в него другого, более твердого тела. Эта характеристика отражает в себе целый комплекс механических свойств. Испытания на твердость материалов с покрытиями могут проводиться для контроля качества нанесенного слоя, выявления изменений в поверхностных участках основного металла, для оценки структурной неоднородности по сечению покрытия, с целью исследования закономерностей изнашивания покрытий, определения прочности соединения покрытия с основным металлом и т. д. Данные о твердости широко используются благодаря ряду достоинств этого метода возможность 100%-ного контроля деталей после нанесения покрытий испытания не являются разрушающими, замеры можно производить непосредственно на детали серийные приборы не сложны по устройству, производительны и удобны в эксплуатации.  [c.25]

Покрытие из интерметаллических порошков, нанесенное на плоскую металлическую поверхность струйно-плазменным методом, толщиной 0,3—1,0 мм отделяется от основы механически благодаря малой прочности соединения с полированной поверхностью плоского металлического образца. Предварительно, до отделения покрытия, из образца вырезается электроэрозионным методом призма сечением 4x20 мм. Отделенные от основы пластинки покрытий помещаются на опорные призмы установки и нагружаются сосредоточенной нагрузкой до разрушения. Определяется Овизг — предел прочности при изгибе и / — прогиб, характеризующий величину упругой деформации покрытия. Этот метод имеет, по нашему мнению, преимущества перед более универсальными испытаниями на растяжение, описанными выше. Он исключает опасные перекосы, неизбежные при закреплении образцов в захватах машины, и обеспечивает надежные результаты, удобные для сравнцтельных оценок качества различных  [c.54]

Одним из основных способов определения прочности соединения покрытия с основным металлом является штифтовый метод. Образцом служит шайба, в отверстие которой устанавливается цилиндрический штифт таким образом, что его торцевая поверхность находится заподлицо с плоскостью основания шайбы. На общую поверхность торца штифта и шайбы после соответствующей подготовки наносится покрытие. Испытания проводят путем вытягивания штифта из шайбы с записью усилия. После отрыва штифта от покрытия определяют отношение максимальной нагрузки к площади торца штифта. Это отношение является количественной характеристикой прочности соединения покрытия с основой. Данный способ находит все более ограниченное применение и в настоящее время используется практически только для оценки гальванических покрытий (метод Е. Олларда).  [c.57]

Существует ряд методов определения напряжений и прочности адгезионного соединения на поверхности раздела в композитах. Эти методы мож1но разделить на две группы, одна из которых — прямые методы измерения прочности сцепления единичных волокон с матрицей, а другая — косвенные методы измерения адгези-овной прочности на поверхности раздела. Методы второй группы можно также рассматривать как качественный анализ получаемых результатов, однако при правильной трактовке возможно их использование и для количественной оценки.  [c.54]

Бара баны котлов, установленных в 30-40-е годы, в том числе импортные, часто изготавливались из кипящей стали, что по существующей НТД не допускается. Поэтому при наработках около 2,5-10 ч можно рекомендовал исследование микроструктуры и определение шх нтеских свойств основного металла и металла нескольких высаженных заклепок. Оценка прочности возможна как при испытании образцов из вырезок на разрыв, тдк и при пересчете твердости на временное сопротивление и предел текучести. Первый метод более предпочтителен, так как позволяет определить не только прочностные, но и пластические характеристики металла. При ухудшении (яойств по сртшнению с исходными, установленными в НТД, необходимо выполнить поверочные расчеты на прочность основного металла обечаек, днищ и заклепочных соединений. Дефекты на поверхности стенок и днищ выявляются с помощью травления, МИД или пенитратов.  [c.165]

Методика расчета резьбовых соединений на мапоцикловую прочность при долговечностях 10° — 10 регламентируется нормами [11]. В основу принятых в нормах методов расчета положены принципы оценки прочности по предельным состояниям (см. гл. 2) разрушение, пластическая деформация по всему сечению детали, потеря устойчивости, возникновение остаточных изменений формы и размеров, приводящее к невозможности эксплуатации конструкции, появление макротрещин при циклическом нагружении. При выборе основных размеров резьбовых соединений, изготовляемых из материалов с отношением предела текучести (То,2 к пределу прочности щ, не превышающим 0,6, в качестве характеристики предельного напряжения принимается предел текучести. Запас прочности по пределу текучести = 1,5. В случае изготовления соединений из сталей с в  [c.199]

Для оценки свойств биметаллов применяют комплекс испытаний, регламентированных ГОСТ 10885-85 и соответствующими техническими условиями так, свойства металла основы для горячекатаной коррозионно-стойкой двухслойной стали определяют испытаниями на растнжеине но ГОСТ 1497-84, ударную вязкость — по ГОСТ 9454-78 и др. Прочность соединения определяют при испытания.х на изгиб образцов с расположением плакирующего слоя внутрь и наружу, на срез — с определением сопротивления срезу по плоскости соприкосновения основного и плакирующего слоев (табл. 8.43). Плакирующий коррозионно-стойкий слон испытывают на межкристаллитную коррозию. Биметаллические листы подвергаются неразрушающим методам контроля.  [c.299]


Применение двух- и многослойных сталей и сплавов, обладающих взаимодополняющими физико-механическими свойствами, позволяет значительно снизить металлоемкость элементов конструкций. Проблема проектирования, создания и эксплуатации биметаллических конструкций повышенного ресурса, в частности высоконагру-женного оборудования АЭС, делает весьма актуальными экспериментальные исследования, направленные на разработку методов оценки несущей способности таких конструкций не только по интегральным характеристикам прочности, но и с учетом наличия трещиноподобных дефектов на стадиях инициации разрущения, а также распространения и остановки трещин. Развитие методов определения критериев сопротивления разрушению и их анализ необходимы для оптимизации свойств биметалла путем правильного выбора сочетания разнородных составляющих соединения, назначения технологического способа его изготовления и определения рационального соотношения толщин основного металла и плакирующего слоя. Кроме того, это необходимо при проведении расчетов на прочность и оценке ресурса биметаллических элементов конструкций, определении допускаемых размеров дефектов, выборе методов и средств дефектоскопии.  [c.107]

Корпусные конструкции энергетических установок помимо разнообразия составляющих их элементов и узлов [1, 2, 4], требующих совместного рассмотрения при расчете напряженного состояния, включают, как показано выше, большое разнообразие условий их взаимодействия, особенно в узлах разъема фланцевых соединений. Некоторые из этих условий могут быть определены численными методами теории упругости (упругие контактные податливости фланцев) или экспериментально (податливости резьбовых соединений или пластических прокладок) для других условий, существенно влияющих на напряженное состояние всей конструкции, могут быть заданы лишь возмоягные пределы их изменения (допуски на зазоры в соединениях крышки п корпуса реактора, коэффициенты трения). Это требует при проектировании, расчете напряжений и оценке прочности корпусных конструкций рассмотрения большого числа вариантов взаимодействия с целью учета наименее благоприятного возможного их сочетания либо задания ограничений на условия изготовления и эксплуатации, исключающих неблагоприятный вариант напряженного состояния. Учесть указанные особенности разъемных соединений при использовании традиционных методов расчета многократно статически неопределимых конструкций, например методом сил [1, 4], из-за большой трудоемкости не представляется возможным поэтому рекомендуемые в настоящее время расчетные схемы [4] рассматривают отдельные узлы корпусных конструкций без учета указанных условий взаимодействия, пренебрегая силами трения, ограничениями по взаимным перемещениям в посадочных соединениях крышки и корпуса, контактными податливостями фланцев. В частности, изменение усилия затяга шпилек фланцевых соединений в различных режимах определяется без полного учета деформаций всей конструкции, что не позволяет обоснованно выбрать величину предварительного затяга шпилек.  [c.88]

Для оценки влияния микроконтактных деформаций на прочность соединения с гарантированным натягом производился расчет возможных сближений в зависимости от величин натягов и шероховатостей поверхностей сопрягаемых деталей. Как следует из (64) и (41) гл. 1, в явном виде вычислить сближение в зависимости от величины натяга не удается. Поэтому в расчетах использовался метод последовательных приближений.  [c.261]


Смотреть страницы где упоминается термин Методы оценки прочности соединений : [c.263]    [c.2]    [c.171]    [c.56]    [c.128]    [c.117]    [c.7]    [c.269]   
Смотреть главы в:

Резьбовые и фланцевые соединения  -> Методы оценки прочности соединений



ПОИСК



276 — Методы оценки прочности

Метод оценки

Методы соединени

Методы соединения

Оценка прочности

Прочность соединений



© 2025 Mash-xxl.info Реклама на сайте