Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Механизмы коррозии

Преобладающим механизмом коррозии металлов в неэлектролитах является химический, т. е. окисление металла и восстановление окислительного компонента коррозионной среды протекают  [c.140]

Возможность подразделения процесса растворения металлов в электролитах на два сопряженных процесса — анодный и катодный — облегчает в большинстве случаев его протекание по сравнению с химическим взаимодействием. При электрохимическом взаимодействии окислитель играет лишь роль деполяризатора, отнимающего валентные электроны металла и обеспечивающего переход металла в ионное состояние, но не вступает с ним при этом в химическое соединение [вторичные процессы и продукты коррозии при электрохимическом механизме коррозии металлов могут иметь место (см. с. 212), но они не обязательны].  [c.181]


Доля электрохимического механизма коррозии при этом может быть рассчитана по уравнению  [c.286]

Гетерогенно-электрохимический и гомогенно-электрохимический механизмы коррозии обычно накладываются один на другой, реализуясь одновременно. Соотнощение скоростей процессов, протекающих ио одному и другому механизму, в зависимости от конкретных условий может изменяться в широком диапазоне, но  [c.18]

Часто думают, что коррозия сопровождается лишь ржавлением или потускнением. Однако коррозионное воздействие может приводить к растрескиванию, потере прочности или пластичности. В большинстве случаев механизм коррозии электрохимический, а продукты коррозии могут быть не всегда заметны и потери массы металла незначительны.  [c.26]

Сточки зрения электрохимического механизма коррозии, термодинамическая возможность процесса может быть описана электродвижущей силой (э. д. с.) коррозионных элементов, суммарное действие которых и есть коррозионный процесс.  [c.30]

МЕХАНИЗМ КОРРОЗИИ КОТЛОВ И ИХ ХИМИЧЕСКОЙ ЗАЩИТЫ  [c.288]

МЕХАНИЗМ КОРРОЗИИ МЕТАЛЛА ПОД ВЛИЯНИЕМ ГАЗОВОЙ СРЕДЫ И ЗОЛЫ ТОПЛИВА  [c.44]

Таким образом, двойные сульфаты играют роль своеобразных кислородных насосов , позволяющих значительно ускорять окисление металла. С учетом циклического характера рассматриваемого механизма коррозии реакция должна протекать с существенной скоростью при небольших содержаниях комплексных сульфатов в отложениях.  [c.70]

Сульфатный механизм коррозии  [c.87]

Существенное влияние температуры газа на интенсивность коррозии труб мазутных котлов показано в 4.8, там же приведена и химическая характеристика отложений (см. рис. 4.36). Ниже приводится объяснение механизма коррозии металла с учетом этих сведений.  [c.87]

Учитывая установленные физико-химические характеристики золовых отложений на поверхностях нагрева мазутного котла и сопоставляя их с интенсивностью коррозии стали, можно предполагать существование двух одновременно действующих механизмов коррозии.  [c.87]

Во-первых, это механизм коррозии металла под влиянием со-  [c.87]

Таким образом, возможны два следующих механизма коррозии в первоначальной стадии.  [c.94]

Первый механизм коррозии протекает в чистой газовой среде либо под влиянием отложений золы, коррозионная активность которых со временем не изменяется. В таком случае в течение времени релаксации коррозии на чистой поверхности корродирующего материала образуется оксидная пленка со стабильными диффузионными свойствами.  [c.94]

При воздействии второго механизма коррозии поверхность металла быстро покрывается равномерной оксидной пленкой. Из-за быстрого возникновения оксидной пленки коррозия за очень короткое время, намного меньшее времени релаксации, переходит от кинетического к диффузионному или промежуточному режиму окисления. Быстрое образование на поверхности металла защитной оксидной пленки позволяет рассматривать коррозию во всем диапазоне времени т тр протекающей при постоянной степени показателя окисления (при заданной температуре), а изменение интенсивности коррозии в переходном процессе выражается в изменении лишь множителя А в формуле (3.7). Таким образом, в первоначальной стадии коррозии величина А при постоянной температуре металла зависит от времени и изменяется от максимального значения, соответствующего моменту т==0, до величины, имеющей место при коррозии под влиянием стабильных  [c.95]


При отсутствии (или неучете) первоначальной стадии коррозии глубина износа также зависит от времени прямолинейно и выражается формулой (вне зависимости механизма коррозии в первоначальной стадии)  [c.192]

Химическая коррозия протекает, как правило, в непроводящих электрический ток средах. Процесс окисления металла и восстановление окислителя среды протекает в одном акте. Характерным примером химической коррозии является коррозия в газах при высоких температурах. Электрохимический механизм коррозии наблюдается в проводящих электрический ток средах. Процессы окисления металла и восстановления окислительного компонента среды могут быть пространственно разделены. Скорость коррозии в этом случае зависит от электродного потенциала корродирующего металла. Для неметаллических материалов закономерности коррозионных разрушений и их химическое сопротивление воздействию окружающей среды также определяется природой и структурой материала, а также свойствами коррозионной среды.  [c.13]

Журнал Защита металлов . Публикует главным образом теоретические статьи, посвященные механизму коррозии металлов, действию ингибиторов, электрохимической защите. Помещаются на его страницах и статьи, посвященные защите лакокрасочными материалами.  [c.16]

Как показали исследования в НИФХИ им. Л. Я- Карпова и на кафедре коррозии металлов МИСиС, коррозия ряда металлов в кислых и нейтральных электролитах протекает иногда по смешанному химико-электрохимическому или по чисто химическому механизму. Одним из важных признаков химического механизма коррозии металла является независимость скорости процесса от потенциала.  [c.279]

Доля электрохимического механизма коррозии металла /Зэ=х при допущении, что скорость химической коррозии постоянна, т. е. ij. M = onst и не зависит от потенциала V, может быть рассчитана по уравнению  [c.281]

Эффективная энергия активации растворения металлов (железа, никеля, алюминия) в электролитах по химическому механизму, согласно данным Г. Г. Пенова, Т. К. Атанасян, С. П. Кузнецовой и др., в 1,5—2,0 раза больше, чем при растворении их с преобладанием электрохимического механизма, что находится в хорошем соответствии с теорией электрохимической коррозии металлов и подтверждает наличие химического механизма коррозии металлов в электролитах.  [c.357]

Одно из принципиальных различий между этими двумя механизмами коррозии металлов заключается в том, что при электрохимической коррозии одновременно происходят два процесса окислительный (растворение металла на одном участке) и восстановительный (выделение катиона из раствора, восстановление кислорода и других окислителей на другом участке металла). Например, в результате растворения цинка в серной кислоте образуются ионы цинка и выделяется газообразный водород при действии воды железо переходит в окисное или гидроокис-ное состояние и восстанавливается кислород с образованием гидроксильных иоиов. При химической коррозии разрушение металлической пoвeJЗXнo ти осуществляется без разделения на отдельные стадии и, кроме того, продукты коррозии образуются непосредственно на тех участках поверхности металла, где происходит его разрушение.  [c.6]

Коррозия серых чугунов, сопровождающаяся растворением феррита, относится к структурноизбирательному типу. Механизм коррозии серых чугунов заключается в том, что феррит постепенно почти полностью переходит в раствор и подвергавшаяся коррозии деталь в конце концов оказывается состоящей только из углеродистого скелета (графит и немного цементита), пространство внутри которого заполнено вместо зерен феррита рыхлыми продуктами коррозии. Механическая прочность такой детали незначительна чугунную трубу, например, можно проткнуть карандашом. Этот вид коррозии, наблюдаемый в основном у бо-1атых графитом чугунов, известен также под названием г])афи-тнзация .  [c.170]

Электрохимическая кинетика — это область науки, изучающая скорость реакции на границе электрода и контактирующей с ним жидкости. Электрохимическая кинетика расширила наше понимание механизма коррозии и позволила практически определять скорость коррозии. Интерпретация коррозионных процессов как суммы частных электродных реакций была разработана Вагнером и Траудом [1 ].В данной главе введены важные понятия электрохимической кинетики — потенциал коррозии (называемый также компромиссным стационарным потенциалом), плотность коррозионного тока, плотность тока обмена и тафелевская зависимость плотности тока от потенциала. В настоящей книге электрохимическая кинетика рассмотрена кратко и в основном  [c.46]


Вагнер и Трауд [1] осуществили важный эксперимент, подтверждающий электрохимический механизм коррозии. Они измеряли скорость коррозии разбавленной амальгамы цинка в подкисленном растворе хлорида кальция, а также катодную поляри зацию ртути в этом электролите. Обнаружилось, что плотность тока, соответствующая скорости коррозии, равна плотности тока, необходимой для поляризации ртути до коррозионного потенциала амальгамы цинка (рис. 4.10). Другими словами, атомы ртути в амальгаме, составляющие большую часть поверхности, действуют как катоды (водородные электроды) , а атомы цинка — как аноды коррозионных элементов . Амальгама анодно поля-  [c.63]

В настоящее время считается признанным предложенный Андерсоном, Дильем, Кейном и Нельсоном механизм коррозии [41, 69—72]. По данным этих исследователей комплексные сульфаты щелочных металлов образуются в реакциях с компонентами летучей золы и окислами серы в слое отложений. Далее, эти комплексные сульфаты диффундируют в слое отложений в сторону более холодной поверхности металла. О возможности диффузии комплексных сульфатов в отложениях золй в более холодную сто-  [c.68]

В соответствии с описанным механизмом (механизм коррозии Нельсона — Кейна) на поверхности металла имеет место следующая реакция  [c.70]

В [86, 87] рассматривается корреляция между свойствами сжигаемого угля и интенсивностью высокотемпературной коррозии металла поверхностей нагрева котла. Теоретической базой исследований принят механизм коррозии металла под влиянием комплексных сульфатов щелочных металлов NaaFe (804)3 и КзРе(504)з.  [c.78]

Исходным для оценки коррозионных свойств топлива в соответствии с отмеченным механизмом коррозии служит содержание в топливе калия (КгО), navpHH (КагО), железа (РегОз), кальция (СаО) и магния (MgO). Из этих компонентов в рассматриваемых составах углей калий и натрий составляют меньшую долю в золе в сравнении с железом либо кальцием и магнием, поскольку количество образующихся комплексных сульфатов прямо пропорционально содержанию щелочных металлов, принимающих участие в образовании названных комплексных сульфатов. При этом учтено, что не все количество калия и натрия принимает  [c.79]

Во-вторых, это сульфатный механизм коррозии. По-видимому, он, имеет более существенное значение, чем первый. Об этом свидетельствует высокое содержание серы в отложениях золы во всех температурных зонах поверхностей нагрева. В зоне с максимальной интенсивностью коррозии относительное количество серы в отложениях превышает ее содержание в других температурных зонах газа как на лобовой, так и на тыльной стороне трубы. Это указывает на то, что соединения серы в отложениях золы мазута должны иметь большое значение в процессе коррозии металла, Высокие значения степени сульфатизации отложений указывают на существование в них сложных сульфатов, по всей вероятности, комплексного сульфата НазРе(504)з- Коррозия сталей под воздействием комплексных сульфатов имеет в определенном температурном интервале металла максимум (рис. 2.4), расположение которого зависит от многих параметров и по данным различных авторов может колебаться в пределах 630—730 °С. Увеличение интенсивности коррозии металла до максимума вызвано образованием и существованием в отложениях агрессивной жидкой фазы комплексного сульфата, а снижение за максимумом вызвано его термическим разложением.  [c.88]

На рис. 4.37 на параметрической диаграмме коррозионной стойкости приведены экспериментальные точки глубины коррозии труб из хромомарганцевых аустенитных сталей, а также стали 12Х18Н12Т. Видно, что коррозионная стойкость всех исследованных хромомарганцевых аустенитных сталей равна и практически не отличается от коррозионной стойкости хромопикелевой аустенитной стали 12Х18Н12Т. Такой результат, по-видимому объясняется тем, что температуры металла, при которых были проведены экспериментальные исследования (до 550 С), являются слишком низкими для воздействия сульфатного механизма коррозии с образованием сульфидных эвтектических смесей с низкой температурой плавления. При существовании сульфатного механизма коррозии можно полагать, что преимущество хромомарганцевых аустенитных сталей в существенной степени должно проявляться при более высоких температурах металла. Следовательно, до температуры металла 550 °С хромомарганцевые аустенитные стали по коррозионной стойкости не имеют явных преимуществ по сравнению с хромоникелевой аустенитной сталью 12Х18Н12Т.  [c.184]

Талиметс Э. Я. К вопросу о механизме коррозии металла в присутствии золы сланцев при высоких температурах/ Материалы конференции по процессам в минеральной части энергетического топлива. — Таллин. 1969. С. 62—69.  [c.264]

Применительно к элементам авиационных конструкций, изготавливаемых из высокопрочных сталей с пределом прочности более 1800 МПа, имеющих структуру МР, развитие усталостных трещин в окружающей среде происходит по фаницам зерен с разной интенсивностью формирования продуктов коррозии в виде окислов в направлении роста трещины. Так, например, разрушение шлиц-шарнира опоры шасси самолета Ту-154Б произошло в эксплуатации по механизму коррозии под напряжением (рис. 7.30). Деталь изготовлена  [c.387]

Важно подчеркнуть, что при всей сложности описания процесса роста усталостных трещин в случае активизации процесса коррозии также может быть решена обратная задача по описанию процесса разрушения и даже по количественной оценке интенсивности роста трешины. Это заключение следует, например, из работы [145], где на основе фрактографического анализа были дифференцированы механизмы коррозии в сталях. Определенные модели роста трещин могут быть рассмотрены только с учетом реализованного механизма разрушения. Более того, формирование параметров рельефа излома в агрессивной среде в виде усталостных бороздок или блоков мезоли-ний позволяет восстанавливать кинетический процесс и проводить интегральную оценку поправочных функций и сопоставлять на их основе предполагаемый (прогнозируемый) и реализованный процесс разрушения.  [c.395]


Коррозия металлов в природных водах и грунтах является в основном процессом, протекающим с кислородной деполяризацией по катодной частичной реакции в соответствии с уравнением (2.17). Выделение водорода из воды по уравнению (2.19) даже в присутствии очень неблагородных металлов типа магния, алюминия и цинка сильно затруднено в принципе оно возможно по уравнению (2.18) из кислот, например из раствора двуокиси углерода или из органических кислот, содержащихся в грунте. Однако агрессивное коррозионное действие кислот обусловливается не столько их участием в катодной частичной реакции, сколько затруднением образования защитного поверхностного слоя из продуктов коррозии. Из-за этого протекание промежуточных частичных реакций по уравнениям (2.17) и (2.21) затормал<ивается в меньшей степени. Знание свойств образующихся поверхностных слоев весьма существенно для понимания механизма коррозии металлов в природных водах и грунтах [1].  [c.132]

Каждое водохранилище имеет определенный состав микробиоценозов, и поэтому механизм коррозии весьма сложен. В сточных водах химических производств обнаружены бактерии, стимулирующие биоповреждения оборудования и соорунсений. Наибольший  [c.28]


Смотреть страницы где упоминается термин Механизмы коррозии : [c.141]    [c.280]    [c.456]    [c.55]    [c.130]    [c.293]    [c.452]    [c.343]    [c.113]    [c.89]    [c.100]    [c.228]   
Лабораторный практикум по испытанию лакокрасочных материалов и покрытий (1977) -- [ c.143 ]



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте