Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Реакция окисления

Если в сварочной ванне содержится некоторое количество кислорода, то при высоких концентрациях углерода будет протекать реакция окисления его. Если концентрация углерода в сварочной ванне в период кристаллизации будет достаточно высокой  [c.254]

Чз табл. 1.2 следует, что в качестве материала сердечников используется не только карбидное, но п окисное топливо. Объясняется это следующим. В последнее время было обнаружено, что реакция окисления пироуглерода с образованием окиси углерода быстро затухает при достижении равновесной концентрации СО. По-видимому, выбор окисного топлива определяется лучшими свойствами двуокиси урана по удержанию  [c.14]


I/I0 моля жидкого бензола и 1 моль кислорода помещены в бомбу постоянного объема при 25 °С. Реакция окисления протекает адиабатно до своего полного завершения. Определить конечную температуру реакционной смеси.  [c.68]

Это способствует также снижению выбросов С Н, за счет увеличения температуры ОГ, более эффективному прохождению реакции окисления в каталитическом нейтрализаторе. Вопросы топливной экономичности в этом случае отодвигаются на второй план, после обеспечения требований минимальной токсичности отработавших газов.  [c.49]

В системе выпуска двигателей происходят реакции окисления окиси углерода и углеводородов ОГ с избыточным кислородом. Эти процессы при относительно невысоких для реакций в газовой среде температурах (300. .. 800 С) проходят с малой скоростью. Для ускорения протекающих реакций используют катализаторы. Механизм действия катализатора сложен. В основе окислительных процессов, протекающих на катализаторах, лежат процессы диссоциативной адсорбции кислорода и продуктов неполного сгорания, вследствие чего скорость их химического взаимодействия резко возрастает.  [c.64]

Повысить температуру ОГ в нейтрализаторе можно, уменьшив теплопотери применением проставок-экранов, теплоизоляцией корпуса нейтрализатора, использованием тепла реакции окисления, а также кратковременным уменьшением угла опережения зажигания. Для двигателей, работающих на обогащенных смесях, дополнительный воздух перед подачей в реакционную камеру нейтрализатора необходимо подогревать горячими стенками системы выпуска ОГ.  [c.77]

На рис. 4 приведены кривые равновесия атмосферы СО + Oj со сталью для реакции окисления Fe (пунктирная прямая) и обезуглероживания стали (сплошные кривые). Из кривых равновесия следует, что для безокислительного нагрева стали в печи с температурой 900° С пригодна атмосфера начиная с состава 68% СО + 32% СО 2, в то время как обезуглероживание стали с 0,8% С может протекать в этой атмосфере до содержания углерода С < < 0,05%, и для устранения обезуглероживания этой стали содержание СО в атмосфере необходимо повысить до 95%.  [c.18]

Для наиболее распространенного процесса газовой коррозии металлов — реакции окисления металла кислородом  [c.19]

Таким образом, рост пористой (незащитной) пленки контролируется скоростью химической реакции окисления металла (кинетический контроль процесса) и протекает во времени по линейному закону.  [c.46]

Рост окисной пленки во времени по законам (ИЗ) и (116) имеет место при соизмеримости торможений химической реакции окисления металла и диффузионных процессов в окисной пленке (окисление железа в водяном паре и углекислом газе, окисление чистой поверхности кобальта в кислороде, окисление меди в кислороде при низком давлении и др.), а также при окислении ряда металлов при высоких температурах, которое сопровождается частичным разрушением защитной окисной пленки.  [c.65]


Рассмотрим более общий случай диффузии окислителя из газовой фазы в окисную пленку, в которой протекает химическая реакция окисления металла, используя метод, предложенный Д. А. Франк-Каменецким. Пусть концентрация окислителя в объеме газовой фазы и на границе пленка—газ с = с о.  [c.67]

Скорость химической реакции окисления не лимитирует процесса роста пленки.  [c.89]

Химическая реакция окисления металлов Me -f /2 Оз МеО  [c.132]

Это реакции окисления в химическом смысле. Коррозия металлов обычно протекает именно на аноде.  [c.23]

Уравнение реакции в несколько упрощенном виде можно получить, вычитая из уравнения реакции восстановления (4) уравнение реакции окисления (5)  [c.34]

Как уже говорилось, восстановление с данной скоростью на платиновом катоде сопровождается обратной реакцией окисления На до Н , протекающей с более низкой скоростью. Считается, что обе реакции происходят на одних и тех же участках поверхности. При равновесии скорости прямой и обратной реакции равны, и соответствующая плотность тока называется плотностью тока обмена. Анодная и катодная реакции корродирующего металла различны одна реакция не является обратной по отношению к другой. Следовательно, реакция окисления может идти только на тех участках поверхности металла, где не протекает реакция восстановления . Поэтому расстояние между анодом и катодом может измеряться как размерами атомов, так и метрами. Соответственно, наблюдаемая поляризация анодных и катодных участков зависит и от площади поверхности, на которой происходит окисление или восстановление. Таким образом, соотношение площадей анода и катода — важный фактор, влияющий на скорость коррозии.  [c.67]

Определение 2. Металл является пассивным, если он обладает значительной устойчивостью к коррозии в данной среде, несмотря на выраженную термодинамическую склонность к реакции окисления.  [c.71]

Растворенный кислород реагирует о атомами водорода, адсорбированными на поверхности железа. Реакция окисления протекает с той же скоростью, с какой Оа достигает поверхности металла.  [c.100]

Обеспечивает в результате реакции окисления выделение основной части энергии, необходимой для резки.  [c.128]

Реакция окисления оксида углерода СО в диоксид СО2  [c.331]

Когда температура достигает 3000° К и выше, суш.ественное влияние на процесс теплообмена начинает оказывать диссоциация составляющих воздух газов (азота и кислорода), а также реакции окисления азота, окислы которого затем также диссоциируют. При температуре 5000—6000 К начинается ионизация воздуха появляются ионы атомарного кислорода и азота, ионы окиси азота и свободные электроны. Зависимость равновесного состава воздуха от температуры показана на рис. 10.2.  [c.379]

Принцип действия топливного элемента. Топливный элемент является химическим генератором электрической энергии (называемым электрохимическим генератором), в котором внутренняя или химическая энергия подаваемых в элемент активных (т. е. реакционно-способных) веществ в результате электрохимических реакций окисления вещества, служащего топливом, и восстановления вещества, являющегося окислителем, преобразуется в электрическую энергию.  [c.594]

Из рассмотрения принципа действия топливного элемента становится ясным еще одно отличие топливного элемента от обычной теплосиловой установки. Это отличие заключается в том, что в топливном элементе реакции окисления и восстановления локально разделены, т. е. протекают на разных электродах и сопровождаются выделением энергии в виде электрического тока, тогда как в теплосиловой установке обе реакции происходят одновременно и приводят к выделению энергии в виде теплоты, которая преобразуется в механическую, а потом уже в электрическую энергию.  [c.595]

Явления воспламенения и горения неразрывно связаны с реакциями окисления или разложения реагентов, они представляют собой сложные физико-химические процессы взаимодействия горючего и окислителя и сопровождаются выделением теплоты и света.  [c.217]

Безокислительные условия горячей и теплой деформации ниобия, тантала, титана, циркония, ванадия, хрома (вторая группа) не обеспечиваются при технически допустимом вакууме, так как они обладают низкой упругостью диссоциации окислов. Однако анализ кинетики окисления показывает, что при переходе к низкому вакууму скорость протекания реакций окисления резко уменьшается. Поэтому изменение глубины вакуума должно вызвать изменение толщины и свойств окисной пленки на металле (см. рис. 278).  [c.527]


Для подавления реакции окисления углерода в период кристаллизации металла шва в сварочной ванне должно содержаться достаточное количество раскислителей, например кремния или марганца. Наряду с этим устранение пор при отсутствии раскислителей при сварке с защитой аргоном может быть достигнуто некоторым повышением степени окисленностп вапны за счет добавки к аргону кислорода (до 5%) или углекислого газа (до 25%) в смеси с кислородом (до 5%). При этом интенсифицируется окисление углерода в зоне высоких температур (в головной части сварочной ванны), усиливается его выгорание, вследствие чего концентрация углерода и содержание кислорода в сварочной ванне к моменту начала кристаллизации уменьшаются и тем самым прекращается образование СО.  [c.255]

Для реакций окисления металлов кислородом, протекающих при Р, Т = onst, эти граничные значения AGf или соответствующие им значения (pojp m можно получить по нашим данным, исходя из примерных границ технически возможного изменения парциального давления кислорода ро, от 10" до 10 атм процесс окисления металла практически возможен, если  [c.20]

Электродвижущая сила этого элемента Етв. возникает при уменьшении свободной энергии АОг реакции окисления металла, что приводит к появлению концентрационного градиента, вызывающего диффузию (градиент поля, приводящий к миграции заряженных частиц, по Вагнеру, не возникает из-за равномерного распределения положительных и отрицательных зарядов в объеме окисла). На поверхности раздела металл — пленка протекает анодная реакция по фор- Ме Пленпа Газ муле (44)  [c.61]

Если поверхностное соединение металла является полупроводником р-типа с недостатком металла, например ujO, NiO, FeO, СоО и др., то при окислении таких металлов должна, по Вагнеру, наблюдаться определенная зависимость от величины давления кислорода (см. рис. 90). В идеальном случае к реакции окисления приложим закон действующих масс. В случае окисления никеля по реакции (54)  [c.131]

Гульбрансеном, Эндрю и Брассаром, показали, что чем выше температура, тем ближе можно подойти к окислению, срсорость которого определяется столкновениями молекул газа с поверхностью металла, т. е. подвижной адсорбцией окислителя. Условия, при которых протекает реакция окисления при возвращении в атмосферу Земли из космоса, могут привести к скоростям окисления, близким к тем, которые дает теория столкновений.  [c.136]

Возможно и облегчение анодных реакций (окисление продуктов радиолиза воды, снижение перенапряжения ионизации металла), но этот эффект незначителен, когда анодная поляризация B0060ie мала.  [c.371]

Допустимая концентрация в защитной атмосфере таких газов, как О2. Н2О. СО , СО, H,J, зависит от температуры, вида металла, компонентов сплава и т.д..Она определяется с помощьг констант равновесия реакций окисления, науглерохивс.ния, обезуглерохивания.  [c.20]

Сущность кислороАИой резки. Кислородной резкой называют способ разделения металла, основанный на использовании для его нагрева до температуры воспламенения теплоты газового пламени и экзотермической (с выделением тепла) реакции окисления металла, а для удаления окислов — кинетической энергии режущего кислорода.  [c.102]

Далее можно определить тафелевские наклоны (см. п. 4.4.2). Экстраполяцией анодного тафелевского участка ria обратимуй (равновесный) потенциал анода определяют плотность тока обмена /оа для реакции -j- гё М.. Значение /оа равно скорости реакций окисления и восстановления, выраженной в единицах плотности тока. Аналогично, экстраполяцией тафелевского участка на обратимый потенциал определяется /он — плотность тока обмена катодной реакции. Экстраполируя анодный или катодный тафелевские участки на потенциал коррозии к,ор> при котором /н = /а, ОПредеЛЯЮТ скорость коррозии /кор при условии, что Ла = Лк (отношение анодной и катодной площадей равно единице). Хотя последнее условие часто довольно точно выполняется, для более точной аппроксимации скорости коррозии требуются необходимые сведения о действительном отношении площадей катодной.и анодной реакции.  [c.61]

Установлено, чтр при окислении ряда металлов (например, меди, цинка, никеля) ионы металла мигрируют сквозь оксид к внешней границе пленки, где и вступают в реакцию с кислородом. Для этих металлов миграция их ионов наружу протекает легче, чем диффузия более крупных ионов кислорода внутрь пленки. Впервые о реакции окисления, идущей преимущественно на внешней, а не на внутренней поверхности оксида, упоминается у Пфейля [20]. Он заметил, что при окислении железа, окрашенного в зеленый цвет QjOs, на поверхности этого слоя появляются оксиды железа. Другими словами, ионы железа диффундируют  [c.194]

Эвтектическая смесь оксидов еще больше снижает температуру плавления. Если в нефти, содержащей ванадий, присутствуют соединения серы или натрия, то благодаря катализирующему влиянию V2O5 на реакцию окисления SO в SO3 образуется содержащая N82804 и различные оксиды окалина, температура плавления которой всего 500 °С. Положительное действие оказывает добавление в нефть кальциевых и магниевых мыл, порошкообразного доломита или магния — они повышают температуру плавления золы вследствие образования СаО (<пл = 2570 °С) или MgO ( пл =2800°С). Катастрофического окисления можно также избежать, работая при температурах ниже точки плавления оксидов. Сплавы, содержащие большое количество никеля, устойчивее вследствие высокой температуры плавления NiO (1990 °С).  [c.201]

Пламя любой газовой горелки неоднородно и состоит из отдельных зон. В первой зоне идет образование активных центров вследствие возбуждения молекул и их диссоциации. Эти процессы эндотермичны и температура первой зоны относительно низкая. Вторая зона — зона горения, т. е. область развития цепных реакций окисления горючего под действием активных центров, поступающих из первой зоны. Эта зона будет самой высокотемпературной частью общего пламени. Третья зона — догорания продуктов реакции из второй зоны или ореол пламени, в который инжектируется кислород и азот окружающего воздуха. Температура в этой зоне постепенно снижается. Максимальная температура пламени определяется составом горючей смеси и природой реагирующих между собой веществ (табл. 8.12).  [c.312]


Хемилюминесценцая — люминесценция, сопровождающая химические реакции. Она возникает в тех случаях, когда один из реагентов оказывается в возбужденном состоянии. Частным случаем хемилюминесценции является биолюминесценция (свечение гниющего дерева, некоторых насекомых, морских животных и др.) она связана с реакциями окисления особого вещества белкового происхождения, выделяемого светящимися организмами.  [c.185]

В 1951 г. Б. П. Белоусов открыл гомогенную периодическук> химическую реакцию окисления лимонной кислоты смесью брома-  [c.34]

В 1951 г. Б. П. Белоусов открыл гомогенную периодическую химическую реакцию окисления лимонной кислоты смесью брома-та калия КВгОз и сульфата церия Се (804)2. В смеси этих веществ, растворенных в разбавленной серной кислоте, происходит реакция восстановления церия  [c.286]

Гетерогенной реакцией горения называют реакцию, три которой вещество поверхности принимает непосредствег ное участие в химической реакции окисления, причем продукты реакции содержат элементы, входящие в состав вещества поверхности.  [c.80]

Здесь б — 2-е число Дамкеллера х = 1Н, — безразмерное время I, — характерное химическое время Е, q, — энергия активации, теплота химической реакции и пред-экспоненциальный множитель для гомогенной реакции окисления оксида углерода у, р — безразмерные числовые г а-раметры, физический смысл которых очевидным образом вытекает из формул для этих величин, приведенных выше Рг, 8с — числа Прандтля и Шмидта индексы ьк, приписывают соответственно параметрам при т] = 0 и харг к-терным величинам, остальные обозначения введены ран( е.  [c.401]


Смотреть страницы где упоминается термин Реакция окисления : [c.38]    [c.64]    [c.106]    [c.125]    [c.196]    [c.318]    [c.341]    [c.40]    [c.418]   
Физико-химическая кристаллография (1972) -- [ c.412 ]

Основы технологии автостроения и ремонт автомобилей (1976) -- [ c.230 , c.231 ]



ПОИСК



Автоколебательные хи ми чесни е реакции в гомогенном растворе. Колебательные реакции окисления броматом

Анодное окисление металлов стадийное протекание реакции

Качественная оценка равновесия реакций окисления азота

Окисление

Окисление общая реакция

Основные блоки автоколебательной реакции окисления броммалоновой кислоты

Расчет реакции окисления железа (II) в свободном объеме

Реакции окисления углеводородного топлива

Реакции окисления хрома в сталеплавильных ваннах

Реакция окисления азота

Тепловые эффекты реакций окисления

Термодинамика реакций окисления азота

Топливо для автомобильных и тракторных двигателей и реакции его окисления

ЦЕПНЫЕ РЕАКЦИИ ОКИСЛЕНИЯ И СВОБОДНЫЕ РАДИКАЛЫ

Энтальпии реакций окисления азота

Энтальпии реакций окисления веществ кислородом

Энтропии реакций окисления азота



© 2025 Mash-xxl.info Реклама на сайте