Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Металлическое поглощение

Такой случаи принято называть металлическим поглощением.  [c.227]

Металлическое поглощение 227 Метод буферного газа 150  [c.274]

Рассмотрим систему тел, аналогичную изображенной на рис. 11.2. Установим между ними экран (рис. 11.4). Лучшую защиту второго тела от излучения первого обеспечит, естественно, абсолютно белый экран, полностью отражающий все падающие на него излучения. Реально можно сделать экран из полированных металлических пластин со степенью черноты еэ = 0,05-н0,15. В этом случае часть энергии, испускаемой первым телом, будет поглощаться экраном, а остальная — отражаться. В стационарном режиме вся поглощенная экраном энергия будет излучаться им на второе тело, в результате чего будет осуществляться передача теплоты излучением от первого тела через экран на второе. Оценим роль экрана, исключив из рассмотрения конвекцию и теплопроводность. Примем, что ei = = е2 = 8э = е и Т[>Т2- Термическое сопротивление теплопроводности тонкостенного экрана практически равно нулю, так что обе его поверхности имеют одинаковые температуры Т,.  [c.94]


Строительство атомных электростанций, атомных кораблей требует самых разнообразных материалов конструкционных сталей, нержавеющих и жаропрочных сталей и сплавов, цветных металлов и других металлических материалов. Но атомная техника предъявила к материалам, используемым для изготовления некоторых деталей, особые требования, не встречающиеся в других отраслях техники. В данном случае речь идет в первую очередь о такой важнейшей характеристике, как способность ядра атома поглощать тепловые нейтроны (нейтроны с низкой энергией). Для атомной техники требуются материалы и с высокой способностью к поглощению нейтронов , и с ма-лон . Способность разных металлов поглощать нейтроны колеблется в очень широких пределах (табл. 114).  [c.557]

Второй этап — кипение металлической ванны — начинается по М( ре ее прогрева до более высоких температур, чем на первом этапе. При повышении температуры металла в соответствии с принципом Де Шателье более интенсивно протекает реакция (5) окисления углерода, происходящая с поглощением теплоты. Поскольку в металле содержится больше углерода, чем других примесей (см. табл. 2.1), то в соответствии с законом действующих масс для окисления углерода в металл вводят значительное количество руды, окалины или вдувают кислород. Образующийся в металле оксид железа реагирует с углеродом по реакции (5), а пузырьки оксида углерода СО выделяются из жидкого металла, вызывая кипение ванны. При кипении уменьшается содержание углерода в металле до требуемого, выравнивается температура по объему ванны, частично удаляются неметаллические включения, прилипающие к всплывающим пузырь-  [c.30]

Нагреваемая солнечным излучением проницаемая зачерненная металлическая стенка применяется в эффективных низкотемпературных солнечных воздухоподогревателях. При малой плотности используемых матриц (многослойных сеток, перфорированной фольги, металлического войлока или зачерненного стекловолокна) поглощение излучения в них приобретает объемный характер и такие устройства следует отнести к ПТЭ с объемным тепловыделением.  [c.10]

Особенности отражения света от металлической поверхности обусловлены наличием в металлах большого числа электронов, настолько слабо связанных с атомами металла, что для многих явлений эти электроны можно считать свободными. Вторичные волны, вызванные вынужденными колебаниями свободных электронов, порождают сильную отраженную волну, интенсивность которой может достигать 95% (и даже больше) интенсивности падающей, и сравнительно слабую волну, идущую внутрь металла. Так как плотность свободных электронов весьма значительна (порядка 10 в 1 см ), то даже очень тонкие слои металла отражают большую часть падающего на них света и являются, как правило, практически непрозрачными. Та часть световой энергии, которая проникает внутрь металла, испытывает в нем поглощение. Свободные электроны, приходя в колебание под действием световой волны, взаимодействуют с ионами металла, в результате чего энергия, заимствованная от электромагнитной волны, превращается в тепло.  [c.489]


Если пх равно единице, то в слое толщиной в одну длину волны (z = Xq) интенсивность света уменьшается ве ", т. е. приблизительно в Ю раз. Планк предложил считать поглощение металлическим , если пх> 1. Действительно, при измерениях в видимой области спектра для большинства металлов значение пк лежит между 1,5 и 5. При переходе в более длинноволновую область значения пх еще больше возрастают так, для серебра при А, = 6 мкм пх достигает значения 40 и при увеличении X растет еще более.  [c.491]

Изложенные выше закономерности, установленные на опыте, показывают, что законы абсорбции света в основном определяются свойствами атома или молекулы, поглощающей свет, хотя действие окружающих молекул может значительно исказить результат. Особенно в случае жидких и твердых тел влияние окружения иногда радикально меняет абсорбирующую способность атома вследствие того, что под действием полей окружающих молекул поведение электронов, определяющих оптические свойства атомов, изменяется до неузнаваемости. Особенно разительно в этом отношении поведение металлов. Действительно, хорошо известно, что пары металлов, даже таких, как, например, серебро или натрий, представляют собой столь же хорошие изоляторы, как и пары (газы) других веществ, тогда как металлическое серебро или натрий являются наилучшими проводниками электричества. Таким образом, поведение наиболее слабо связанных с атомами электронов в изолированных атомах металлов и в конденсированном металле резко различно. В соответствии с этим металлический натрий не обнаруживает никаких признаков спектра поглощения, характерного для паров натрия и изображенного на рис. 28.14.  [c.568]

Нетрудно подтвердить это заключение простыми опытами. В качестве излучателя возьмем наполненную горячей водой коробку (рис. 36.1), плоские стенки которой обладают различной способностью к поглощению одна сделана из хорошо полированного металла и поглощает очень мало, а другая покрыта черным слоем окисла и почти нацело поглощает падающую на нее энергию. В качестве приемника удобно использовать воздушный термометр, резервуар которого <3 также представляет собой металлическую  [c.686]

Схема термобатареи показана на рис. 14.10,6. Для более полного поглощения излучения рабочие ( горячие ) спаи термопар 1 зачернены либо электролитическим способом, либо путем напыления сажи или окислов металлов. Холодные спаи термопар -образуются приваркой их свободных концов к тонким металлическим пластинкам 3, установленным на слюдяном кольце 4 и расположенным вне зоны облучения.  [c.291]

Рис. 43. Термопара, состоящая из полупроводниковых стержней с различной проводи-Поглощение радиации Сре- мостью и металлических пла-ДОЙ приводит к ее нагреву, с тин. подводящих напряжение Рис. 43. Термопара, состоящая из полупроводниковых стержней с различной проводи-Поглощение радиации Сре- мостью и металлических пла-ДОЙ приводит к ее нагреву, с тин. подводящих напряжение
Войлоки применяют для сальников, задерживающих смазочные масла в местах трения и предохраняющих места трения от попадания в них воды и пыли для прокладок между металлическими поверхностями, предохраняющих их от коррозии, истирания, попадания на них загрязнений, а также для смягчения ударов и сотрясений и поглощения звука для фильтров, используемых при фильтрации масел.  [c.367]

В предыдущей главе было показано, что динамические свойства линейных резиноподобных материалов можно представить с помощью любых двух из следующих трех параметров накопленного модуля, модуля поглощения и коэффициента потерь. Для задач, рассматриваемых в данной главе, при описании демпфирующих свойств материалов потребуются только накопленный модуль и коэффициент потерь. Демпфирующие свойства резиноподобных материалов зависят от технологического оборудования. Например, на рис. 3.1 показана температурная зависимость динамических перемещений при соответствующих частотах колебаний для типичной металлической жестко защемленной на одном конце и свободной на другом балки, на которую нанесен демпфирующий слой. Исследуя зависимости от температуры, можно обнаружить области, где материал проявляет хорошие демпфирующие свойства. В то же время, изучая частотную зависимость, можно видеть четыре первых формы колебаний балки. Из рис. 3.1 с очевидностью следует, что характер поведения балки для соответствующих форм колебаний  [c.105]


Процессу испарения (разрушения) материала предшествует передача энергии кристаллической решетке с последующим нагревом материала. Поглощение света свободными электронами металлической пленки приводит к возрастанию энергии электронного газа, которая передается кристаллической решетке при электрон-фононных столкновениях за время около 10 с.  [c.158]

Адгезия к окислам металлов и металлических пленок, осажденных на окисную подложку, во многом определяется образованием химических соединений [3], в частности окислов [5, 10, 12L При исследовании тонких пленок молибдена и ванадия, напыленных на подложки SiOj и AlaOg, необходимо обратить внимание на возможность обнаружения на межфазной границе пленка — подложка окислов молибдена и ванадия соответственно. Однако в то время как металл обладает максимально возможным коэффициентом поглощения К Ю —10 смг ) в очень широкой области спектра от жесткого ультрафиолета и до радиоволн включительно, окислы в широких спектральных участках обладают значительно меньшим коэффициентом поглощения [14]. Поэтому сравнительно небольшие по интенсивности полосы поглощения окислов практически невозможно обнаружить на фоне мощного поглощения чистого металла. Лишь в определенных участках спектра, в которых начинаются собственные поглощения, обусловленные междузонными переходами, величина поглощения окисла может в какой-то мере приближаться к коэффициенту поглощения металла. Для обнаружения окислов молибдена и ванадия по оптическому пропусканию тонких пленок, напыленных на окисные подложки, необходимо было выбрать такой спектральный интервал, в котором происходит резкое изменение величины коэффициента поглощения окисла молибдена или ванадия) от сравнительно небольших значений до значений, близких к их металлическому поглощению. Только в этом случае можно обнаружить характерные спектральные изменения пропускания, которые будут указывать на наличие того или иного окисла. Так как при высоких температурах, начиная с 800° С и выше, стабильны только  [c.19]

При поглощении солнечной радиации пластина I, имеющая селективное покрытие для максимального поглощения в спектральном интервале 0,2—3 мкм и минимального излучения при Х>4 мкм, нагревается. Если в то же время пропускать охлаждающую воду по каналам 6, в контурах, образованных парами полупроводниковых пластин 3, 4 и металлических пластин 1, 2, 5, возникает термоэлектрический ток (пунктирные линии). При указанной на рисунке последовательности соединения полупроводниковых пластин наличие тока обеспечивает поглощение значительного количества тепла Пельтье на спаях пластин 3, т. е. охлаждение корпуса хо,тодильника 2.  [c.230]

Взаимодействие света с металлом приводит к возникновению вынужденных колебаний свободных электронов, находящихся внутри металлов. Такие колебания вызывают вторичные волны, приводящие к сильному отражению света от металлической поверхности и сравнительно слабой волне, идущей внут])ь металла. Чем больше электропроводность металлов, тем сильнее происходит отражение света от нх поверхности. В идеальном проводнике, для которого а -> оо, поглощение полностью отсутствует н весь падающий на его поверхность свет отражается. Поэтому заметный слой металла является непрозрачным для видимого света. Сильное поглощение проникающей внутрь металла световой волны обусловлено превращением энергии волны в джоулево тепло благодаря взаимодействию почти свободных электро1Юв, испытываюидих вынужденные колебания под действием световой волны.  [c.61]

Резкость интерференционной картины. Резкость интерференционной картины будет зависеть от коэффициента отражения нанесенной на пластины пленки. На рис. 5.22 показана зависимость резкости полос интерференции для разных значений R от углового расстояния относительно центра интерференционной картины. Значение R = 0,04 соответствует поверхности чистого стекла, в то время как R = 0,99 соответствует поверхности с многослойным покрытнбм. Следует обратить внимание па то, что при рассмотрении интерференции многих лучей мы полагали R + Т = I, т. е. пренебрегали поглощением внутри пластинки. Однако при нанесении на поверхность пластины полупрозрачного металлического слоя происходит поглощение, в результате чего интенсивность изменится. Поэтому пользуются выражением R + Т + А I, где А — коэффициент суммарного поглощения света отражающими слоями.  [c.115]

При экспериментальном осуществлении этой идеи, конечно, возникает ряд трудностей. Так, например, исключена возможность использования высокоотражающих металлических частиц, так как даже при коэффициенте отражения fR = 98% оставшихся 2% поглощенной энергии достаточно для сильного нагрева и даже плавления исследуемых объектов. Опыт удалось осуществить, используя малые сферические диэлектрические частицы, помещенные в дистиллированную воду. Хотя в этом  [c.111]

Вопрос о связи между испускательной и поглощательной способностями различных тел подлежит детальному выяснению. Весьма простые опыты показывают, что чем больше энергии поглощает тело, тем больше оно излучает. Для демонстрации этой особенности теплового излучения измеряют поток световой энергии от двух стенок полого металлического i yoa, заполненного теплой водой (рис. 8.2). Одна из стенок, снаружи блестящая — она много света огражает и мало поглощает. Друг ая С1 енка зачернена. Ее коэффициент поглощения велик. Фотоприемник (термостолбик), соединенный с чувствительным гальванометром, поочередно подносится к двум этим стенкам куба, и отброс гальванометра, регистрируемый при измерении интенсивности излучения зачерненной стенки, во много раз больше, чем при измерении светового потока от блестящей стенки.  [c.403]


Проходя через металл отливки, рентгеновские лучи частично поглощаются им, частично пронизывают металл, частично отражаются многочисленными поверхностями металлических кристаллов, давая рассеянное вторичное рентгеновское излучение. Интенсивность поглощения рентгеновских лучей металлом зависит от плотности элемента и от его места в Периодической системе элементов Д. И. Менделеева, от атомного номера. Чем больше атомный номер просЕючиваемого элемента, тем больше он поглощает рентгеновских лучей. Поглощенная энергия рентгеновских лучей вызывает появление "скрытогхз изображения" за счет изменений бромистого серебра, находящегхкя в эмульсии, и превращения его в металлическое состояние на экране установки или фиксирования изображения на фотопленке.  [c.376]

Если пх=1, то в слое толщи ной в одну длину волны (2 = Яо) интенсивность света уменьшается в е р аз, т. е. приблизительно в 10 раз. Планк предложил считать поглощение металлическим , если пх>1. Действительно, для большинства металлов пк изменяется в пределах от 1,5 до 5.  [c.26]

Экспансионный ожижитель Симона. Существуют три различных типа гелиевых ожижителей, а именно непрерывного действия с предварительным водородным охлаждением, непрерывного действия с охлаждением детандером и хорошо известный процесс ожижения без использования непрерывного потока. Первые два способа ожижения кратко описаны выше. Третий способ используется в так называемом экспансионном ожижителе Симона [2], который показан схематически на фиг. 7. В этом ожижителе газообразный гелий, охлажденный и змеевике S, нагнетается в металлическую камеру В, охлаждаемую жидким или твердым водородом G. Чтобы обеспечить теплопроводность пространства Z, последнее заполняется гелием при низком давлении. Теило, поглощенное водородной ванной, определяется уменьшением внутренней энергии гелия после входа в камеру и работой сжатия. Работа сжатия равна 2 mpv, где т—масса очень малого количества входящего "аза, а v—его удельный объем. Если весь газ входит при одинаковой температуре Т,, то общая работа потока равна NRT , где lY—число молей газа, который входит в камеру, а В—газовая постоянная. Охлаждение с помощью водорода, требующееся для поглощения тепла, производимого работой сжатия, может оказаться больше того, которое необходимо для изменения внутренней энергии гелия. Это видно из сравнения величины двух произведений В1 и С ,ср,(2 ,—Tj), где Гд—конечная температура.  [c.132]

Пример 33.1. Две серые металлические трубы размещены одна в другой (коаксиально). Внутренняя (горячая) труба 1 имеет внешний диаметр di=0,8M, температ фу поверхности Т, = 550К, коэффициент черноты ei = 0,5 (по формуле (33.34) коэффициент черноты е равен коэффициенту поглощения а]. Внешняя (холодная) труба 2 имеет внутренний диаметр 2=1,0м, температуру поверхности 300 К, коэффициент черноты 82 = 2 = 0,3. Воздух измежтруб-ного пространства удален для уменьшения потерь за счет конвективного теплообмена. Определить потери теплоты (тепловым излучением) внутренней  [c.416]

Металлические и керамические порошки. В работе [102] исследовано формирование наноструктур при консолидации порошков Ni и керамики. Порошок N1(99,85%) получали методом газовой атомизации (размер порошинок бмкм), а аморфный нанопорошок Si02 со средним размером частиц 4,4 нм методом испарения-конденсации [104]. Для удаления поглощенных паров  [c.49]

Структуру свеженапыленных пленок молибдена и ванадия, а также отожженных при температурах 600, 900, 1150° С исследовали методом поглощения света в области длин волн 350 —500 нм в случае молибденовых пленок, и 350—580 нм для пленок ванадиевых, а также методом электронной микроскопии. Спектрофотометрические измерения давали также информацию об образовании промежуточных фаз и установлении химических связей металлическая пленка — подложка.  [c.16]

И это еще не все. Легкоплавкие составляющие металлического сплава при затвердевании слитка оттесняются к его середине. Их удельный вес ниже, чем вес других частей сплава, более богатых железом. Поэтому легкоплавкие части сплава всплывают в верхнюю часть слитка н остывают последними. Но при остывании объем металла сокращается. Однако внешние очертания слитка ун е зафиксированы его коркой, затвердевшей в первую очередь. К концу затвердевания слитка оказывается, что для его заполнения не хватает жидкого металла. Поэтому верхние осевые слои слитка содержат не только максимальное количество примесей, в том числе наибо.пее вредных для качества металла — серы и фосфора, но и имеют более или менее развитые пустоты, называемые усадочной раковиной. Кроме того, при остывании жидкой стали в изложнице наблюдается выделение газовых пузырей. Их появление объясняется двумк причинами пли это выделяются газы, поглощенные металлом в процессе плавки, или в жидкой стали еще не закончились химические процессы между отдельными ее компонентами. Пока сталь еще пе затвердела, газовые пузыри пробиваются вверх и уходят в атмосферу. Однако, когда металл становится густым и плотным, пузырькам газа все труднее преодолеть его толщу, и они так и остаются в застывшей стальной массе в виде газовых пустот. Естественно, такие пустоты снижают  [c.66]

И поэтому конструкторы предложили для таких реакторов использовать меньшее количество замедлителя, лишь ровно столько, чтобы замедлить нейтроны только до промежуточных энергий (скажем, несколько сот электрон-вольт). Однако этот интервал энергий как раз попадает в диапазон резонанса, для которого характерно максимальное поглош,ение нейтронов ядрами урана-238. Следовательно, для того чтобы в таком реакторе проходила самоноддерживающаяся цепная реакция, урановое топливо должно быть очень сильно обогащено ураном-235. Кроме того, было применено следующее интересное явление, заключающееся в том, что ядерное сечение расщепления ядер урана-235 нейтронами также имеет несколько пиков в диапазоне резонанса. Поэтому было предложено замедлять нейтроны в данном реакторе до таких энергий, значения которых группировались бы около одного из максимумов расщепления урана-235, избегая в то же время максимумов поглощения нейтронов ядрами урана-Й8 (рис. 28). Используя этот принцип, сконструировали несколько промежуточных реакторов, в одном из которых топливом, например, служил сильно обогащенный уран, замедлителем — металлический бериллий, а теплоносителем — жидкий натрий  [c.85]

Продукты окисления графита анализировали на полумикро газоаналитической установке на содержание кислорода, водо рода, окиси и двуокиси углерода. Анализ был основан на фракционном вымораживании и поглощении компонентов газовой смеси на меди, окиси серебра и металлическом кальции. По сокращению объема газовой смеси определяли число отдельных компонентов. Кроме того, содержание кислорода проверяли еще колориметрическим газоанализатором с чувствительностью 0,001%.  [c.211]

Резиновые, резино-металлические и губчатые детали для автомобильного, тракторного и сельскохозяйственного машиностроения, предназначенные для поглощения ударов, вибрации, шума, скрипа частей автомобиля при его движении, а также в качестве масло-бензоводопроводов, изоляторов, уплотнительных прокладок и других целей, изготовляют по МРТУ 38-5-204-65 и чертежам потребителя (табл. 61 и 62),  [c.202]

Необходимость быстрого и надежного контроля качества металлических изделий большой толщины потребовала создания и применения источников излучения с большой нроникаюд] ей способностью. Поэтому за последние годы в 7-дефектосконии все большее применение находят бетатроны с энергией у-квантов от 10 до 31 Мэе, так как именно этой области соответствует наименьшее значение эффективного коэффициента поглощения -, -лучей в стали и других металлах.  [c.334]



Смотреть страницы где упоминается термин Металлическое поглощение : [c.313]    [c.18]    [c.115]    [c.244]    [c.244]    [c.326]    [c.33]    [c.440]    [c.67]    [c.149]    [c.283]    [c.21]    [c.143]    [c.148]    [c.266]    [c.90]    [c.292]    [c.550]   
Взаимодействие лазерного излучения с веществом Курс лекций (1989) -- [ c.227 ]



ПОИСК



Поглощение



© 2025 Mash-xxl.info Реклама на сайте