Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Основные теоремы динамики материальной точки

Основные теоремы динамики материальной точки  [c.190]

СВЯЗЬ МЕЖДУ ТЕОРЕМАМИ, ПРИНЦИПОМ ДАЛАМБЕРА И ОСНОВНЫМ УРАВНЕНИЕМ ДИНАМИКИ МАТЕРИАЛЬНОЙ ТОЧКИ  [c.276]

Сначала доказывается теорема 1 если тело находится в равновесии, то главный вектор и главный момент всех сил, приложенных к этому телу, равны нулю. При доказательстве используются основное уравнение динамики материальной точки и общепринятая модель тела — система материальных точек.  [c.3]


Если рассматривать излучающий центр и систему отброшенных частиц как единую механическую систему, то основные теоремы динамики для точки переменной массы не будут отличаться от соответствующих теорем динамики системы материальных точек постоянной массы. При такой постановке задачи для изучения движения излучающего центра необходимо знать законы движения (историю движения) всех отброшенных частиц. Рассмотрения подобного рода чрезвычайно сложны в теоретическом отношении и мало интересны для практики. Достаточно указать, что классическая задача небесной механики, так называемая задача трех тел , при произвольных начальных условиях до настоящего времени не решена.  [c.76]

В этой главе рассмотрено несколько простейших типовых задач, при решении которых можно использовать теоремы динамики для точки и системы материальных точек — теорему об изменении количества движения, теорему об изменении кинетической энергии и основной закон динамики для вращательного движения твердого тела (А. И. Аркуша, 1.56 и 1.58).  [c.320]

ОСНОВНЫЕ ТЕОРЕМЫ ДИНАМИКИ СВОБОДНОЙ МАТЕРИАЛЬНОЙ ТОЧКИ  [c.359]

Заметим, наконец, что, пользуясь соотношением (1У.225), можно найти три основные теоремы динамики относительного движения материальной точки аналогично доказанным выше теоремам для абсолютного движения.  [c.447]

Основные теоремы динамики системы материальных точек. Введем вектор  [c.33]

В задачах программированного контроля по динамике студент должен показать знание и умение вычислять основные динамические характеристики материальной точки и твердого тела (количество движения, момент количества движения или кинетический момент относительно точки или оси, кинетическую энергию). Примером может служить карточка программированного контроля по теме Теорема об изменении кинетического момента системы материальных точек относи тельно точки или оси  [c.15]

Здесь не подчеркнуты важнейшие признаки, по которым та или иная система координат может быть названа (выбрана) системой отсчета движения материальной точки или совокупности точек просматривается попытка смешивать систему координат и систему отсчета. Приведем еше один пример, где такое смешивание наблюдается в более явной форме Отметим, что понятие сопутствующей системы отсчета в теоретической механике давно известно. Оно используется в основных теоремах динамики при выделении переносной системы о т-счета, поступательно движущейся в инерциальном пространстве вместе с центром масс рассматриваемой механической системы. .. [3. С. 17]. (Разрядка наша. - И.Т.)  [c.9]


После изложения основных понятий динамики материальной системы доказывается теорема об изменении кинетической энергии точки и рассматривается понятие работы сил, действующих на материальную точку.  [c.69]

Рассмотрим основные теоремы динамики для системы материальных точек.  [c.121]

Основные теоремы динамики системы, к изложению которых мы переходим, представляют собой современный аппарат для изучения интегральных характеристик движения механических систем материальных точек. Особенно важное значение имеют следствия из основных теорем динамики системы, получаемые при некоторых предположениях о классах действующих сил и называемые обычно законами сохранения основных кинетических величин количества движения, кинетического момента и кинетической энергии.  [c.368]

Движение механической системы происходит так, что ее центр масс движется как материальная точка, в которой приложены все векторы сил, действующие на отдельные точки системы. Это — основная теорема динамики системы.  [c.486]

Общее уравнение динамики системы материальных точек. Основные теоремы  [c.378]

Настоящая глава динамики системы является непосредственным развитием содержания гл. III ч. IV первого тома. Из четырех основных теорем динамики системы три были рассмотрены раньше для частного случая одной материальной точки. Четвертая теорема — теорема о движении центра инерции — по своему содержанию может быть рассмотрена только в динамике системы.  [c.40]

Для вывода этой теоремы сначала в случае одной материальной точки умножим обе части основного дифференциального уравнения динамики точки  [c.212]

Таким образом, при исследовании поступательного движения твердого тела это тело можно рассматривать как материальную точку, сосредоточив всю массу тела в его центре масс и перенеся в эту точку все действующие на тело внешние силы. При этом на основании теоремы о движении центра масс основным уравнением динамики поступательного движения твердого тела будет  [c.584]

Связь между основными динамическими величинами и силами действующими на систему дают общие теоремы динамики системы материальных точек.  [c.164]

Общие теоремы динамики системы материальных точек теоремы количеств движения и моментов количеств движения, а также теорема об изменении кинетической энергии имеют широкое применение при изучении движений сплошных сред и, в частности, жидкостей и газов. Они были уже применены в предыдущих параграфах при выводе основных уравнений механики сплошных сред, причем использовалось лагранжево представление движения. Остановимся на некотором своеобразии применения этих теорем, связанном с эйлеровым представлением движения.  [c.75]

Прежде всего рассматривается задача о движении материальной точки, находящейся под действием совокупности сил. Формулируются законы Ньютона, выводятся дифференциальные уравнения движения точки. Особо отмечается случай, когда точка находится в равновесии (статика точки). Далее формулируются основные задачи динамики точки и рассматриваются примеры (например, задача о колебаниях точки). Здесь же доказывается теорема об изменении кинетической энергии точки и подробно изучается понятие работы силы и теория потенциального силового поля.  [c.74]

Практическое значение теоремы об изменении импульса материальной точки при решении задач невелико, так как дифференциальная форма ее предоставляет основное уравнение динамики с разделенными переменными, и по сравнению с (6.1) она существенно новых соотношений не дает. Главная область применения теоремы в механике — это изучение мгновенных или ударных сил. Так называются силы, продолжительность действия которых весьма мала, и закон изменения их со временем практически остается неизвестным. Такие силы будут характеризоваться вектором импульса силы (9.3).  [c.111]


Теорема об изменении момента импульса материальной точки. Умножим почленно основное векторное уравнение динамики в форме (9.1) слева векторно на радиус-вектор точки. При этом в правой части равенства получим геометрическую сумму моментов заданных сил и сил реакции связей. Обозначая указанную сумму  [c.114]

Получили систему из п векторных уравнений. Проецирование этих уравнений на оси декартовых координат приводит к Зп дифференциальным скалярным уравнениям движения системы. Эти уравнения позволяют в принципе, как и в динамике точки, решать две основные задачи определять силы по заданному движению системы и определять движение системы по заданным силам. Но на практике при решении- второй задачи динамики системы возникают большие математические трудности и ее точные решения для системы из трех и более материальных точек неизвестны. Поэтому большое значение приобретают общие теоремы динамики системы, позволяющие просто  [c.130]

Для изучения поступательного движения твердого тела вводится понятие материальной точки [1]. Это позволяет сделать динамику материальной точки физически ощутимой, облегчает анализ упражнений и сопоставление с опытными данными аксиоматически вводимых принципа относительности Галилея, принципа детерминированности и законов Ньютона. Анализируются ограничения на форму законов механики и физики, следующие из принципов относительности и детерминированности [5, 67]. Ставятся основные задачи механики. Выявляются преимущества различных систем криволинейных координат для описания движения точки. Доказываются основные теоремы механики и сообщаются основные приемы, применяемые для исследования движения. Как основа качественного анализа поведения механических объектов подробно изучаются фазовые портреты осцилляторов. На их примере демонстрируется влияние потенциальных и диссипативных сил, а также резонансные явления различных типов [37]. Изучается динамика материальной точки, стесненной связями [61].  [c.11]

В этой главе будет рассмотрен ряд основных положений динамики, дающих возможность находить первые интегралы дифференциальных уравнений двилгения материальной точки. Эти положения динамики будем называть теоремами, так как они являются непосредственными следствиями из основных законов и аксиом механики. Заметим, что иногда эти теоремы называют также законами, но, конечно, при этом их надо четко отличать от основных законов механики — законов Ньютона. Основные теоремы динамики — это выводы в первую очередь из второго закона Ньютона, который поэтому называется основным законом механики.  [c.359]

С математической точки зрения основные теоремы динамики — теоремы о движении центра инерции, об изменении количества движения, об изменении кинетического момента и об изменении кинетической энергии дают возможность находить в частных случаях первые интегралы дифференциальных уравнений движения. Возможность получешгя этих интегралов завггеггт от особенностей системы сил. приложенных к точкам материальной системы. Эти свойства были подчеркнуты при рассмотрении соответствующих теоре.м на протяжении последней главы.  [c.105]

Нам представляется неудачным термин гидравлика переменной массы , широко используемый Г. А. Петровым и некоторыми другими авторами. При установившемся движении масса жидкости в каждом неподвижном отсеке потока (эйлеровы переменные) остается постоянной. Поэтому такого типа течения, на наш взгляд, лучше называть потоками с переменным по пути расходом. Гидравлическая теория таких потоков лшжет быть построена на основе законов механики о движении тела переменной массы. В то же время такая интерпретация явления имеет смысл лишь прк гидравлическом (одномерном) его описании. Попытки отдельных авторов (А. С. Кожевников и др.) строить основные дифференциальные уравнения гидродинамики, базируясь на теореме Мещерского динамики материальной точки переменной массы, строга говоря, лишены основания, так как в гидродинамической постановке учет изменения расхода потока вследствие присоединения или отделения части расхода по длине требует лишь соответствующего назначения граничных условий.  [c.719]

В динамике точки мы рассмотрим три основные теоремы теорему об изменении количества движения материальной точки, теорему об изменении кинетической энергии точки и теорему об изменении момента количества движения. Кроме того, будет рассмотрен ряд теорем, не принадлежащих к осноеш>ш, но имеющих определенное самостоятельное значение.  [c.359]

Теорема об изменении момента количества движения в приложении к одной материальной точке представляет собой простое следствие основного закона Ньютона. Это следствие оказывается полезным при решении некоторых задач динамики характер этих задач подсказывается формой уравнений (5) и (6).  [c.155]

Дифференциальные уравнения движения свободного твердого тела. Пусть требуется найти движение свободного твердого тела относительно неподвижной системы координат OaXYZ. Согласно теореме Шаля (п. 21), любое движение твердого тела можно рассматривать как совокупность поступательного движения, определяемого движением произвольной точки тела (полюса), и движения тела вокруг этой точки как неподвижной. При описании движения полюс желательно выбрать так, чтобы его движение определялось наиболее просто. Из основных теорем динамики следует, что за полюс удобно взять центр масс. Действительно, согласно теореме о движении центра масс, последний движется как материальная точка, к которой приложены все внешние силы системы, а теоремы об изменении кинетического момента и кинетической энергии для движения вокруг центра масс (см. определение этого понятия в п. 81) формулируются точно так же, как и для движения вокруг неподвижной точки.  [c.214]


В 1743 г. был опубликован основной труд Даламбера по механике — его знаменитый Трактат о динамике . Первая часть Трактата посвящена построению аналитической статики. Здесь Даламбер фор.мулирует основные принципы механики , которыми он считает принцип инерции , принцип сложения движений и принцип равновесия . Принцип инерции сформулирован отдельно для случая иокоя и для случая равномерного прямолинейного движения. Принцип сложения движений представляет собой закон сложения скоростей по правилу параллелограмм,а. Принцип равновесия сформулирован в виде следующей теоремы Если два тела, обладающие скоростями, обратно пронорциональными их массам, имеют противоположные направления, так что одно тело не может двигаться, не сдвигая с места другое тело, то между этими телами будет иметь мест равновесие . Во второй части трактата, называемой Общий иринциидля нахождения движения многих тел, произвольным образом действующих друг на друга, а также некоторые применения этого принципа , Даламбер предложил общий метод составления дифференциальных уравнешгй движения любых материальных систем, основанный на сведении задачи динамики К статике. Здесь для любой системы материальных точек формулируется правило, названное впоследствии принципом Даламбера , согласно которому приложенные к точкам системы силы мон<но разложить на действующие , т. е. вызывающие ускорение системы, и потерянные , необходимые для равновесия системы.  [c.195]

Мы видели, что дифференциальное уравнение (84) относительного движения материальной точки имеет тот же вид, что и дифференциальное уравнение движения точки относительно неподвижной системы отсчета различие между этими уравнениями состоит лишь в том, что в уравнение относительного движения, кроме заданных сил и реакций связей, входят еще переносная и кориолисова силы инерции. С другой стороны, в главе 21 мы видели, что все общие теоремы динамики точки (теорема о количестве движения, теорема о моменте количества движения, теорема о кинетической энергии) являются следствием основного дифференциального уравнения динамики точки, выражающего второй закон Ньютона. Отсюда следует, что все эти обпще теоремы применимы и к относительному движению точки, но понятно, что, применяя эти теоремы к относительному движению, мы должны принять во внимание переносную и кориолисову силы инерции. В частности, при решении задач, относящихся к относительному движению точки, нередко приходится пользоваться теоремой о кинетической энергии. Нри составлении уравнения, выражающего эту теорему в относительном движении, необходимо принять во внимание работу переносной и кориолисовой сил инерции на относительном перемещении точки. Но так как ускорение Кориолиса Н7д всегда перпендикулярно к относительной скорости v , то следовательно, работа кориолисовой силы инерции в относительном движении равна нулю, и эта сила в уравнение теоремы о кинетической энергии не войдет. Поэтому это уравнение в дифференциальной форме будет иметь следующий вид  [c.456]

Изменению подвергся в основном первый раздел— Статика . Значительно расширены 2 Аксиомы статики и 3 Связи и реакции связей , заново написан 4 Определение равнодействующей двух сил, приложенных к точке . Переработаны 22 Приведение плоской системы сил к данному центру , а также глава VIII Центр тяжести . Глава Графостатика и параграф Определение усилий в стержнях ферм методом моментных точек из учебника исключены. Из раздела Динамика исключены два параграфа Дифференциальные уравнения точки и Движение материальной точки, брошенной под углом к горизонту , а также доказательство теоремы о движении центра инерции.  [c.3]

Кинетйческая энергия. Теорема об изменении кинетической энергии материальной точки. Выполним преобразование основного уравнения динамики, для того чтобы от силы, действующей на материальную точку, перейти к работе этой силы. Умножая скалярно обе части основного уравнения динамики на вектор бесконечно малого перемещения точки, получаем т- йг = Р(1г.  [c.121]


Смотреть страницы где упоминается термин Основные теоремы динамики материальной точки : [c.12]    [c.2]   
Смотреть главы в:

Сборник заданий для курсовых работ по теоретической механике  -> Основные теоремы динамики материальной точки

Основы теоретической механики  -> Основные теоремы динамики материальной точки

Сборник заданий для курсовых работ по теоретической механике,1978  -> Основные теоремы динамики материальной точки



ПОИСК



ДИНАМИКА Динамика точки

Динамика Динамика материальной точки

Динамика материальной точки

Динамика точки

Задание Д.6. Применение основных теорем динамики к исследованию движения материальной точки

Материальная

ОСНОВНЫЕ ПОНЯТИЯ и ТЕОРЕМЫ ДИНАМИКИ СИСТЕМЫ Дифференциальные уравнения движения системы материальных точек в декартовых координатах

Основные Динамика

Основные теоремы

Основные теоремы динамики свободной материальной точки

Основные теоремы динамики системы материальных точек

Связь между теоремами, принципом Германа—Эйлера—Даламбера и основным уравнением динамики материальной точки

Связь между теоремами, принципом Даламбера и основным уравнс.ем динамики материальной точки

Теорема динамики точки

Теоремы динамики

Теоремы динамики основные

Точка материальная

Точка основная



© 2025 Mash-xxl.info Реклама на сайте