Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Основные теоремы динамики системы материальных точек

Основные теоремы динамики системы материальных точек. Введем вектор  [c.33]

Связь между основными динамическими величинами и силами действующими на систему дают общие теоремы динамики системы материальных точек.  [c.164]

Общие теоремы динамики системы материальных точек теоремы количеств движения и моментов количеств движения, а также теорема об изменении кинетической энергии имеют широкое применение при изучении движений сплошных сред и, в частности, жидкостей и газов. Они были уже применены в предыдущих параграфах при выводе основных уравнений механики сплошных сред, причем использовалось лагранжево представление движения. Остановимся на некотором своеобразии применения этих теорем, связанном с эйлеровым представлением движения.  [c.75]


Общее уравнение динамики системы материальных точек. Основные теоремы  [c.378]

Основные теоремы динамики системы, к изложению которых мы переходим, представляют собой современный аппарат для изучения интегральных характеристик движения механических систем материальных точек. Особенно важное значение имеют следствия из основных теорем динамики системы, получаемые при некоторых предположениях о классах действующих сил и называемые обычно законами сохранения основных кинетических величин количества движения, кинетического момента и кинетической энергии.  [c.368]

Если рассматривать излучающий центр и систему отброшенных частиц как единую механическую систему, то основные теоремы динамики для точки переменной массы не будут отличаться от соответствующих теорем динамики системы материальных точек постоянной массы. При такой постановке задачи для изучения движения излучающего центра необходимо знать законы движения (историю движения) всех отброшенных частиц. Рассмотрения подобного рода чрезвычайно сложны в теоретическом отношении и мало интересны для практики. Достаточно указать, что классическая задача небесной механики, так называемая задача трех тел , при произвольных начальных условиях до настоящего времени не решена.  [c.76]

Движение механической системы происходит так, что ее центр масс движется как материальная точка, в которой приложены все векторы сил, действующие на отдельные точки системы. Это — основная теорема динамики системы.  [c.486]

В этой главе рассмотрено несколько простейших типовых задач, при решении которых можно использовать теоремы динамики для точки и системы материальных точек — теорему об изменении количества движения, теорему об изменении кинетической энергии и основной закон динамики для вращательного движения твердого тела (А. И. Аркуша, 1.56 и 1.58).  [c.320]

Настоящая глава динамики системы является непосредственным развитием содержания гл. III ч. IV первого тома. Из четырех основных теорем динамики системы три были рассмотрены раньше для частного случая одной материальной точки. Четвертая теорема — теорема о движении центра инерции — по своему содержанию может быть рассмотрена только в динамике системы.  [c.40]


В задачах программированного контроля по динамике студент должен показать знание и умение вычислять основные динамические характеристики материальной точки и твердого тела (количество движения, момент количества движения или кинетический момент относительно точки или оси, кинетическую энергию). Примером может служить карточка программированного контроля по теме Теорема об изменении кинетического момента системы материальных точек относи тельно точки или оси  [c.15]

Сначала доказывается теорема 1 если тело находится в равновесии, то главный вектор и главный момент всех сил, приложенных к этому телу, равны нулю. При доказательстве используются основное уравнение динамики материальной точки и общепринятая модель тела — система материальных точек.  [c.3]

Здесь не подчеркнуты важнейшие признаки, по которым та или иная система координат может быть названа (выбрана) системой отсчета движения материальной точки или совокупности точек просматривается попытка смешивать систему координат и систему отсчета. Приведем еше один пример, где такое смешивание наблюдается в более явной форме Отметим, что понятие сопутствующей системы отсчета в теоретической механике давно известно. Оно используется в основных теоремах динамики при выделении переносной системы о т-счета, поступательно движущейся в инерциальном пространстве вместе с центром масс рассматриваемой механической системы. .. [3. С. 17]. (Разрядка наша. - И.Т.)  [c.9]

Рассмотрим основные теоремы динамики для системы материальных точек.  [c.121]

Получили систему из п векторных уравнений. Проецирование этих уравнений на оси декартовых координат приводит к Зп дифференциальным скалярным уравнениям движения системы. Эти уравнения позволяют в принципе, как и в динамике точки, решать две основные задачи определять силы по заданному движению системы и определять движение системы по заданным силам. Но на практике при решении- второй задачи динамики системы возникают большие математические трудности и ее точные решения для системы из трех и более материальных точек неизвестны. Поэтому большое значение приобретают общие теоремы динамики системы, позволяющие просто  [c.130]

После изложения основных понятий динамики материальной системы доказывается теорема об изменении кинетической энергии точки и рассматривается понятие работы сил, действующих на материальную точку.  [c.69]

С математической точки зрения основные теоремы динамики — теоремы о движении центра инерции, об изменении количества движения, об изменении кинетического момента и об изменении кинетической энергии дают возможность находить в частных случаях первые интегралы дифференциальных уравнений движения. Возможность получешгя этих интегралов завггеггт от особенностей системы сил. приложенных к точкам материальной системы. Эти свойства были подчеркнуты при рассмотрении соответствующих теоре.м на протяжении последней главы.  [c.105]

В 1743 г. был опубликован основной труд Даламбера по механике — его знаменитый Трактат о динамике . Первая часть Трактата посвящена построению аналитической статики. Здесь Даламбер фор.мулирует основные принципы механики , которыми он считает принцип инерции , принцип сложения движений и принцип равновесия . Принцип инерции сформулирован отдельно для случая иокоя и для случая равномерного прямолинейного движения. Принцип сложения движений представляет собой закон сложения скоростей по правилу параллелограмм,а. Принцип равновесия сформулирован в виде следующей теоремы Если два тела, обладающие скоростями, обратно пронорциональными их массам, имеют противоположные направления, так что одно тело не может двигаться, не сдвигая с места другое тело, то между этими телами будет иметь мест равновесие . Во второй части трактата, называемой Общий иринциидля нахождения движения многих тел, произвольным образом действующих друг на друга, а также некоторые применения этого принципа , Даламбер предложил общий метод составления дифференциальных уравнешгй движения любых материальных систем, основанный на сведении задачи динамики К статике. Здесь для любой системы материальных точек формулируется правило, названное впоследствии принципом Даламбера , согласно которому приложенные к точкам системы силы мон<но разложить на действующие , т. е. вызывающие ускорение системы, и потерянные , необходимые для равновесия системы.  [c.195]


Дифференциальные уравнения движения свободного твердого тела. Пусть требуется найти движение свободного твердого тела относительно неподвижной системы координат OaXYZ. Согласно теореме Шаля (п. 21), любое движение твердого тела можно рассматривать как совокупность поступательного движения, определяемого движением произвольной точки тела (полюса), и движения тела вокруг этой точки как неподвижной. При описании движения полюс желательно выбрать так, чтобы его движение определялось наиболее просто. Из основных теорем динамики следует, что за полюс удобно взять центр масс. Действительно, согласно теореме о движении центра масс, последний движется как материальная точка, к которой приложены все внешние силы системы, а теоремы об изменении кинетического момента и кинетической энергии для движения вокруг центра масс (см. определение этого понятия в п. 81) формулируются точно так же, как и для движения вокруг неподвижной точки.  [c.214]

Мы видели, что дифференциальное уравнение (84) относительного движения материальной точки имеет тот же вид, что и дифференциальное уравнение движения точки относительно неподвижной системы отсчета различие между этими уравнениями состоит лишь в том, что в уравнение относительного движения, кроме заданных сил и реакций связей, входят еще переносная и кориолисова силы инерции. С другой стороны, в главе 21 мы видели, что все общие теоремы динамики точки (теорема о количестве движения, теорема о моменте количества движения, теорема о кинетической энергии) являются следствием основного дифференциального уравнения динамики точки, выражающего второй закон Ньютона. Отсюда следует, что все эти обпще теоремы применимы и к относительному движению точки, но понятно, что, применяя эти теоремы к относительному движению, мы должны принять во внимание переносную и кориолисову силы инерции. В частности, при решении задач, относящихся к относительному движению точки, нередко приходится пользоваться теоремой о кинетической энергии. Нри составлении уравнения, выражающего эту теорему в относительном движении, необходимо принять во внимание работу переносной и кориолисовой сил инерции на относительном перемещении точки. Но так как ускорение Кориолиса Н7д всегда перпендикулярно к относительной скорости v , то следовательно, работа кориолисовой силы инерции в относительном движении равна нулю, и эта сила в уравнение теоремы о кинетической энергии не войдет. Поэтому это уравнение в дифференциальной форме будет иметь следующий вид  [c.456]

Изменению подвергся в основном первый раздел— Статика . Значительно расширены 2 Аксиомы статики и 3 Связи и реакции связей , заново написан 4 Определение равнодействующей двух сил, приложенных к точке . Переработаны 22 Приведение плоской системы сил к данному центру , а также глава VIII Центр тяжести . Глава Графостатика и параграф Определение усилий в стержнях ферм методом моментных точек из учебника исключены. Из раздела Динамика исключены два параграфа Дифференциальные уравнения точки и Движение материальной точки, брошенной под углом к горизонту , а также доказательство теоремы о движении центра инерции.  [c.3]


Смотреть страницы где упоминается термин Основные теоремы динамики системы материальных точек : [c.12]    [c.2]   
Смотреть главы в:

Теоретическая механика  -> Основные теоремы динамики системы материальных точек



ПОИСК



ДИНАМИКА Динамика точки

Динамика Динамика материальной точки

Динамика материальной системы

Динамика материальной точки

Динамика системы материальных точек

Динамика системы точек

Динамика системы точки 165 —Теоремы

Динамика точки

Материальная

ОСНОВНЫЕ ПОНЯТИЯ и ТЕОРЕМЫ ДИНАМИКИ СИСТЕМЫ Дифференциальные уравнения движения системы материальных точек в декартовых координатах

Основные Динамика

Основные теоремы

Основные теоремы динамики материальной точки

Основные теоремы динамики системы

Система материальная

Система материальных точек

Система основная

Система точек

Системы Динамика

Теорема динамики точки

Теорема динамики точки системы

Теорема системы

Теоремы динамики

Теоремы динамики основные

Теоремы динамики системы

Теоремы динамики системы динамики точки

Точка материальная

Точка основная



© 2025 Mash-xxl.info Реклама на сайте