Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Деформации тепловые (температурные)

В условиях жесткого крепления фрикционной накладки к металлической колодке вследствие теплового расширения и усадки фрикционного - материала в накладке могут возникать температурные и усадочные напряжения, определяемые в общем виде выражением а = ъЕ (выражение не учитывает вязкоупругих свойств материалов и обусловленных ими релаксационных явлений), где а — возникающее напряжение е — относительная деформация (тепловое расширение, тепловая усадка), Е — модуль упругости. Из анализа этого выражения следует, что асбофрикционный материал должен иметь минимальное тепловое расширение и усадку и невысокий модуль упругости. Исследования показывают, что вследствие релаксационных явлений и ползучести возникающие напряжения значительно ниже вычисленных по указанной формуле [27].  [c.136]


При утильном обжиге, как это установлено практикой, остаточные механические ( тепловые ) напряжения, как правило, тем выше, чем ниже конечная температура утильного обжига изделий, изготовленных из масс, содержащих полевой шпат, кварц и глинистое вещество. При охлаждении фарфоровых изделий (независимо от температуры предварительного утильного обжига) начиная с 750° С резко возрастает величина их деформации максимум достигается при 600—570° С, затем деформация понижается. С повышением температуры предварительного обжига с 925 до 1000° С максимальная величина деформации уменьшается. Основная причина этого вероятнее всего обусловлена различием структур черепка, обожженного при разных температурах. Уменьшение тепловой деформации при охлаждении образцов, предварительно обожженных при 1350° С, обусловлено наличием вязкой полевошпатовой стекловидной фазы и снижением содержания свободного кварца за счет растворения его в расплавленном полевом шпате. Резко повышенная деформация в температурном ин-  [c.368]

Сознавая, что удельный объем металлов может изменяться под влиянием (I) упругих деформаций, (2) температурного расширения, (3) внезапных аллотропных превращений кристаллической структуры или (4) постепенных необратимых изменений структуры, вызываемых холодной или горячей пластической обработкой, и что механические постоянные твердого тела — модули упругости, коэффициент теплового расширения, вязкость и предел текучести — изменяются с температурой далеко не простым образом, следует ясно представлять себе, что расчет температурных напряжений в телах, когда температура изменяется в широком диапазоне, выдвигает сложные проблемы ), в особенности если температурное поле носит переходный характер, т. е. может очень быстро изменяться со временем, как, например, в  [c.458]

Если принять краевое условие для давления в виде оц = = —p t)y причем p t) Oy то механическая нагрузка будет вызывать внутри полупространства только сжимающие деформации. Тепловая же нагрузка будет способствовать появлению внутри полупространства растягивающих деформаций для времени t х а. Величина давления, приложенного к границе в начальный момент, и изменение во времени давления и температуры на границе полупространства будут определять решение на волне х = at и конфигурации областей пластических деформаций на координатной плоскости для t > xja. Определение реш ения в областях координатной плоскости, лежащих выше характеристики х = at, представляет значительную трудность прежде всего ввиду необходимости рассматривать ряд вариантов решения (в зависимости от значений и изменений во времени нагрузок на границе). Кроме того, осложняется применение метода сеток характеристик. Это следует из трудности выбора соответствующего размера элементарной ячейки сетки характеристик температурные эффекты убывают вглубь очень быстро, а возмущения, вызванные механической нагрузкой, убывают очень медленно. При напряжения стремятся к значениям, отвечающим пределу текучести. Приходится поэтому строить решение при t > xja иным путем, например при помощи метода итераций Куранта.  [c.285]


Изменения, внесенные холодной деформацией в структуру и свойства металла, не необратимы. Они могут быть устранены, например, с помощью термической обработки (отжигом). В этом случае происходит внутренняя перестройка, при которой за счет дополнительной тепловой энергии, увеличивающей подвижность атомов, в твердом металле без фазовых превращений из множества центров растут новые зерна, заменяющие собой вытянутые, деформированные зерна. Так как в равномерном температурном поле скорость роста зерен по всем направлениям одинакова, то новые зерна, появившиеся взамен деформированных, имеют примерно одинаковые размеры по всем направлениям.  [c.56]

Предположим, что в естественном исходном состоянии (ег/ = 0, (То = 0) тело имеет некоторую начальную постоянную температуру То. Пусть АТ=Т—То — изменение температуры в физической точке тела. Тогда за счет ДТ" возникнут температурные деформации s j = бг/аЛТ , где а — коэффициент линейного теплового расширения материала. Полная деформация будет представлять сумму температурной и силовой  [c.83]

Температурная деформация оптических. элементов приводит к изменению их геометрических размеров, по.этому в основе контроля тепловых режимов работы лежат методы контроля формы поверхностей с применением синтезированных голограмм. По данным, полученным этими методами, определяют предельные отклонения Л/ при различных значениях температуры и устанавливают рекомендации по эксплуатации приборов.  [c.110]

При стационарном тепловом процессе, рассматриваемом ниже, предполагают, что полная деформация тела является суммой упругой деформации, связанной с напряжениями обычными соотношениями, и чисто теплового расширения, соответствующего известному из классической теории теплопроводности температурному полю. В теории термоупругости обычно накладывается ограничение на величину термического возмущения приращение температуры предполагается малым по сравнению с начальной абсолютной температурой. Снятие этого ограничения не нарушает предположения о малости деформаций (перемещений), но  [c.90]

В статических задачах термоупругости температурное поле является стационарным. Задачи, в которых не учитывают эффект связанности температурного поля деформаций, а также силы инерции, обусловленные нестационарным температурным полем, называют квазистатическими. В этих задачах тепловые напряжения в упругом теле в рассматриваемый момент времени определяются при известном температурном поле (время здесь является параметром). При решении задач термоупругости в качестве основных неизвестных принимают компоненты вектора перемещений или тензора напряжений. В соответствии с этим различают постановку задачи термоупругости в перемещениях или в напряжениях. Во всех случаях, если это особо не оговаривается, упругие и термические коэффициенты предполагают постоянными.  [c.91]

Исследовать влияние коэффициента температуропроводности на уровень и распределение температур в носовом профиле стреловидного крыла сверхзвукового летательного аппарата кратковременного действия, имеющего форму затупленного клина (рис. 17.2). Аэродинамический нагрев тел, обтекаемых потоком воздуха, обусловлен эффектами диссипации энергии, повышением температуры в зонах динамического сжатия потока и высокой интенсивностью теплоотдачи, характер- р с 172 ной для носовых частей затупленных тел. Информация о тепловом режиме элементов конструкции необходима для прочностных расчетов. Температурное поле в носовом профиле помимо условий обтекания, формы и геометрических размеров тела в условиях неустановившегося полета зависит также от физических свойств материала, из которого изготовлен профиль. В частности, неравномерность распределения температур и, следовательно, величины термических деформаций зависят от коэффициента температуропроводности материала а = = Х/(ср).  [c.263]


Локализация деформации зависит от величины теплового эффекта, зависящего от модуля сдвига, теплопроводности и теплоемкости металла, от числа плоскостей сдвига в единице объема и от интенсивно-стн температурного разупрочнения металла.  [c.196]

Например, упругая или тепловая деформация изделия, которая может привести к отказу, не является процессом старения, так как при снятии внешних нагрузок (силовых и температурных), вызвавших данную деформацию, изделие приобретает исходные характеристики.  [c.36]

Внешняя сотовая теплоизоляция из коррозионно-стойкой стали была рассчитана на местный нагрев до 315° С, в то время как внутренние поверхности были рассчитаны на нормальные условия жизнедеятельности. Для монтажа теплоизоляции на внутренних оболочках требовался конструкционный материал, который мог бы служить также теплоизолятором. Для изготовления радиальных и окружных несущих элементов использовался стеклопластик из ткани, пропитанной фенольной смолой. Радиальные элементы изготовлялись из двух Т-образных секций, чьи фланцы вставлялись в отверстия в тепловой защите и внутренней оболочке. На стыке секции скреплялись механически, образуя в сборе элемент двутаврового профиля. Окружные элементы представляли собой кольцевые сектора, соединенные на шлицах для компенсации разницы температурных деформаций.  [c.110]

Для получения сигнала, соответствующего тепловому расширению испытываемого образца, перед началом нагружений выполняется температурная качка свободного незакрепленного образца с воспроизведением температурного режима испытаний. Регистрация с помощью деформометра и соответствующей регистрирующей аппаратуры сигнала от теплового расширения образца позволяет скорректировать программу компенсационного задатчика и учесть указанные выше особенности теплового расширения, а также разброс размеров и теплофизических свойств образцов. В результате в условиях неизотермического нагружения на двухкоординатных крупномасштабных приборах осуществляется запись диаграмм циклического деформирования в координатах нагрузка — механическая деформация и исключается из рассмотрения с помощью системы автоматической компенсации сигнал на деформометре, вызванный температурным расширением.  [c.258]

Эксперименты [48], в которых для сплошного корсетного образца широко варьировали длительность этапов термического цикла, показали, что выход на режим /max по программе еще не свидетельствует о стабилизации температурного поля образца (рис. 21,ц). За счет прогрева прилегающих к рабочей части объемов образца происходит прирост термической деформации до некоторой величины, определяемой стационарным тепловым состоянием образца, а термическая продольная деформация достигает предельного значения лишь к 8—10 мин после начала нагрева (рис. 21,6). В связи с этим с увеличением суммарного времени нагрева прирост продольной термической деформации на этапе выдержки становится меньше (рис. 21,в).  [c.38]

Выравнивание температур газа и грунта позволяет практически исключить влияние газопровода на естественный тепловой и гидравлический режим местности, повысить надежность линейной части трубопровода и увеличить его пропускную способность. В настоящее время ставится вопрос о необходимости круглогодичного охлаждения газа до температуры грунта по всей трассе газопровода, в том числе и за пределами северных районов. Целесообразность такого предложения обосновывается стабилизацией теплового режима работы газопровода в годовом цикле уменьшением линейных деформаций, а следовательно, и температурных напряжений, возникающих в металле труб снижением интенсивности коррозионных процессов. Это должно привести к повышению надежности линейной части, а также к некоторому увеличению подачи товарного газа. Положительные эффекты перекрывают дополнительные затраты, связанные с сооружением холодильных установок на каждой компрессорной станции.  [c.70]

Нагрузки, воздействующие на конструкции, подразделяются на силовые и тепловые. Силовые нагрузки могут приводить к изменению физико-химических свойств материалов, к ползучести и дополнительным температурным деформациям. В ряде случаев этот вид нагрузки может вызвать изменение жесткости отдельных частей, изменение характера распределения внешних поверхностных нагрузок и динамических характеристик самой конструкции. Сравнительно большая тепловая инерция материалов приводит к неравномерному распределению температуры по элементам конструкции. В результате этого возникает неравномерная деформация конструкции, подобная деформация под действием силовых нагрузок. Поэтому обычно и выделяют дополнительные температурные напряжения.  [c.23]

Поэтому при определении оптимального температурно-скоростного диапазона деформации исследуемого материала следует учитывать влияние теплового эффекта пластической деформации.  [c.58]

Исследование температурных полей и деформаций. Исследования температурных полей нужны для оценки работоспособности узлов трения, теплостойкости и точности машии. Температура сказывается на работе узлов трении в связи с температурными изменениями зазоров, резким изменением вязкости масла, изменением свойсги поверхностных слоев материалов, особенно коэффициентов сухого трения. При высоких температурах понижаются механические свойства материалов, происходит тепловое охрупчивание и ползучесть. Температурные деформации существенно влияют на точность измерительных маптин, прецизионных станков и других машин.  [c.481]

Можно перечислить ряд факторов, которые в той или иной степени могут влиять на результаты пластометрических исследований, проведенных по различным методам испытаний 1) тип кристаллической решетки металла, анизотропия свойств и состояние поставки образцов 2) эффект динамики нагружения и жесткости испытательной машины (особенно при растяжении) 3) роль гидростатического давления и масштабного фактора при различных видах испытаний 4) роль теплового эффекта пластической деформации и температурного градиента по длине и сечению образца 5) способ крепления образца и контактные условия при испытаниях.  [c.49]


Различная температура в отдельных частях машин и наличие температурных градиентов по длине и толш,ине стенок детали являются причинами неравномерных тепловых деформаций. Тепловые деформации изменяют форму, величину зазоров и натягов в сопряжениях, а также взаиморасположение поверхностей, установленное при сборке.  [c.339]

Рис. 3. Термомеханические взаимодействия для упругопластических тел. 1 — теплоемкость 2 — упругость 5 — пьезокалорический эффект 4 нагревание от упругих деформаций 5 — температурные напряжения 6 — тепловое расширение 7 изменение аффинности л, связанное с упрочнением 8 — изменение я, определяемое температурой 9 — нагревание от Рис. 3. Термомеханические взаимодействия для упругопластических тел. 1 — теплоемкость 2 — упругость 5 — пьезокалорический эффект 4 нагревание от <a href="/info/1488">упругих деформаций</a> 5 — <a href="/info/5974">температурные напряжения</a> 6 — <a href="/info/16570">тепловое расширение</a> 7 изменение аффинности л, связанное с упрочнением 8 — изменение я, определяемое температурой 9 — нагревание от
Деформации форм. Температурные деформации форм, возникающие при тепловой обработке, во многих случаях приводят к образованию трещин в свежеотформованном бетоне. Технологические приемы предупреждения трещин заключаются в уменьшении сил сцепления бетона со сталью, удалении из форм перед тепловой обработкой отдельных бортовых элементов, вкладышей, фиксаторов закладных частей и т. п.  [c.90]

До сих пор мы ограничивались рамками механики и не рассматривали тепловые эффекты. Общеизвестно, однако, что изменение температуры вызывает деформацию тел. Температурные деформации и обусловленные ими напряжения часто ифают первостепенную роль и могут приводить к разрушению конструкций.  [c.112]

Для измерения деформаций при высоких температурах разработаны температурно-компенсированные тензодатчики, исключающие влияние кажущихся напряжений, вызванных тепловым расширением поверхности. Компенсированные датчики из константановой проволоки позволяют измерять те.мпературу до ЗОО С, нихро.мовые — до 750 С и платиновые — до ПОО С. Высокотемпературные тензодатчики закрепляют на поверхности деталей с по.мощью термостойких керамических цементов.  [c.156]

Обеспечение свободь тепловых деформаций. Следует избегать осевой фиксации деталей в двух точках. При наличии температурных деформаций в случае такой фиксации могут появиться термические напряжения, вызванные торможением смежности.  [c.379]

Г асчетам на прочность при повышенных гемпературах и расчетам температурных деформаций должны предшест[ювать или совмещаться собственно тепловые расчеты — определение температур.  [c.18]

На рис. 11.8 в качестве примера представлены наблюдаемые деформации металла хи Т), г н Т), 82 (Л при сварке и дилатограм-ма металла Есв(7 ) для соответствующего термического цикла в продольном сечении, расположенном на расстоянии у=15 мм от оси шва пластины толщиной 6=10 мм из коррозионно-стойкой стали 12Х18Н10Т размером 400X400 мм, проплавляемой посередине неплавящимся вольфрамовым электродом в среде аргона (Усв=2,8 10 м/с), тепловая мощность =3670 Вт. Здесь результаты представлены в координатах деформация — температура с равномерной разбивкой температурной оси на стадии нагрева от нормальной до максимальной температуры и на стадии охлаждения от максимальной до нормальной температуры.  [c.421]

Контроль тепловых режимов эксплуатации. Воздействие окружающей среды на работу оптических систем проявляется в виде температурной деформации элементов, приводящей к возникновению нескомпенсированных аберраций. Среднесуточный перепад температур, например в горных районах, составляет около 50—60 С. Температурные хзеформации особенно необходимо учитывать при изготовлении оптических элементов астрономических телескопов и их работе.  [c.110]

Выполняя свою основную функцию по электромеханическому преобразованию энергии, ЭМУ вызывает побочные вторичные явления — тепловые, силовые, магнитные, оказывающие значительное, а в ряде случаев, например в гироскопических ЭМУ [7], и определяющее влияние на показатели объекта. Нагрев элементов ЭМУ определяет его долговечность и работоспособность, а в гироскопии — также точность и готовность прибора. Деформации и цибрации в ЭМУ возникают из-за наличия постоянных и периодически меняющихся сил различной физической природы, в том числе сил температурного расщирения элементов, трения, электромагнитных взаимодействий, инерции, от несбалансированности вращающихся частей, неидеальной формы рабочих поверхностей опор и технологических перекосов при сборке и др. и существенно влияют на долговечность и акустические показатели ЭМУ, а в гироскопии — через смещение центра масс и на точность прибора. Магнитные поля рассеяния ЭМУ создают нежелательные взаимодействия с окружающими его элементами, приводящие к дополнительным потерям энергии, вредным возмущающим моментам, разбалансировке и пр.  [c.118]

Температурные напряжения в длинном круговом цилиндре. Рассмотрим стационарное тепловое состояние цилиндра с осесимметричным распределением температуры Т, не зависящим от координаты х = г воспользуемся полярными цилиндрическими координатами г, 0, 2, совмещая ось г с осью цилиндра. Предположим вначале, что торцы цилиндрической трубы с внутренним радиусом и наружным радиусом закреплены таким образом, что е = О, т. е. рассматриваем задачу плоской деформации. В этом случае отличныын от нуля будут три компоненты тензора напряжений Огт, О00 и зависящие только от координаты г.  [c.283]

При фиксации вала двумя опорами подшипники устанавливают враспор (см. рис. 16.14 и 16.18) или врастяжку (см. рис. 16.15). Внутренние кольца подшипников упираются в буртики вала или в торцы других деталей, установленных на валу, а наружные — в торцы крышек или других деталей, закрепленных в корпусе. Один подшипник предотврашает осевое смещение вала в одном направлении, а другой — в противоположном. Фиксация вала двумя опорами предусматривает возможность осевой регулировки подшипников и исключает вероятность защемления вала в опорах при температурных деформациях подшипников и вала. Для шариковых радиальных подшипников во избежание защемления тел качения предусматривают осевой зазор 0,2...0,3 мм между крышкой и наружным кольцом подшипника для компенсации теплового расширения, а для радиальноупорных шарико- и роликоподшипников предусматривают осевую регулировку.  [c.330]

Температурная деформация. Многие эломопты конструкций и современной технике работают при высокой температуре. При анализе деформаций должно быть учтено тепловое расширение, что скойствеиио всем физическим телам.  [c.111]

Температурный градиент является вектором, направленным по нормали к изотермической поверхности, причем за положительное направление вектора принимается направление в сторону возрастания температур, т. е. dtldn>0. Если же вектор направлен в сторону убывающей температуры, то производная dt/dn будет отрицательной. Температурный градиент показывает, насколько интенсивно (резко) меняется температура в толще тела и является важной величиной, определяющей многие физические явления (появление трещин в хрупком теле от неравномерного нагрева, термические деформации и т. д.). Количество тепла Q, проходящее в единицу времени через изотермическую поверхность F, называют тепловым потоком. Тепловой поток q на 1 поверхности называют удельным тепловым потоком, плотностью теплового потока или тепловой нагрузкой поверхности нагрева.  [c.137]


Циклическое изменение температуры сопровождается тепловым расширением образца, причем при линейном изменении температуры во времени тепловая деформация существенно нелинейна, зависит от характера изменения температуры (нагрев — охлаждение) и наличия выдержек. Для компенсации температурного расширения и получения данных о величинах механических деформаций используется метод, аналогичный приведенному в [104, 199]. В канал измерения деформаций вместе с сигналом деформо-метра вводится в противофазе сигнал от задатчика, программа которого соответствует установившейся тепловой деформации свободного незакрепленного образца при циклическом изменении температур. Погрешность, возникающая при вычитании, составляет / 1% от величины тепловой деформации образца.  [c.258]

В последние десятилетия получили распространение систематические исследования циклической прочности материалов в области малоцикловой усталости (деформации лежат в пластической области), что особенно характерно для зон концентрации напряжений. Однако недостаточно полно изученным остается вопрос о сопротивлении мапоцикповому разрушению при попигармониче-ском нагружении, в том числе при высоких температурах, когда проявление температурно-временных эффектов может инициироваться высокочастотной составляюш ей циклических напряжений. Режимы нагружения, при которых на основной процесс цикличе ского изменения напряжений накладывается переменная состав-ляюЕдая более высокой частоты, свойственны элементам тепловых и энергетических установок, лопастям гидротурбин, лопаткам газотурбинных двигателей и ряду других деталей и узлов. Исследования сопротивления малоцикловой усталости при двухчастотных режимах нагружения выполнялись в весьма ограниченном объеме и без привлечения методов, позволяющих достаточно полно охарактеризовать особенности циклического деформирования материала в упругопластической области.  [c.15]

Необходимо отметить, что регистрация физических явлений, возникающих при деформировании металлических образцов, наряду с исследованием микроструктурной картины существенно расширяет экспериментальные возможности установок для тепловой микроскопии. На Ленинградском металлическом заводе им. XXII съезда КПСС А. Е. Левиным была выполнена модернизация установки ИМАШ-5С-65 и на ней с применением диктофона для образцов жаропрочного сплава исследован процесс скачкообразной деформации, сопровождающийся образованием щелчков [53]. На основании анализа фонограмм были установлены температурные интервалы равномерного и скачкообразного протекания деформации, а визуальное наблюдение за поверхностью образцов и анализ фотоснимков, сделанных на установке ИМАШ-5С-65 во время опыта, позволили выяснить, что скачки связаны с процессами вчутризеренного сдвигообразования. На основании полученных экспериментальных результатов была предложена модель механизма, объясняющая скачкообразную деформацию, а также определены режимы терми-  [c.131]

Микроструктурные исследования композиций Ni — 2,5 об. % ThOj и Ni —2,5 об.% НЮа показали, что их экструдированное состояние характеризуется мелким зерном (1—2 мкм), ориентированным в направлении экструзии. При дальнейшей холодной или тепловой деформации образуется типичная волокнистая структура с размером волокон в поперечном сечении менее 1 мкм. Отжиг при температурах 1300—1400° С приводит к возникновению структурной неоднородности, характеризующейся, с одной стороны, образованием крупных зерен с характерными двойниками отжига и, с другой стороны, сохранением участков волокнистой структуры. Внутри мелких зерен наблюдаются плотные сплетения дислокаций и дислокационные субграницы различного типа, стыкующиеся с высокоугловыми границами зерен. В рассматриваемых материалах увеличивается температурный интервал существования полигональной структуры, и в этом состоит особенность их рекристаллизации [55].  [c.8]


Смотреть страницы где упоминается термин Деформации тепловые (температурные) : [c.17]    [c.29]    [c.2]    [c.151]    [c.236]    [c.111]    [c.458]    [c.127]    [c.11]    [c.13]    [c.271]    [c.294]   
Прикладная механика твердого деформируемого тела Том 2 (1978) -- [ c.470 , c.471 ]



ПОИСК



Деформация температурная

Специфика теплового влияющего поля — Методы расчета температурных деформаций

Температурные деформации и температурные швы



© 2025 Mash-xxl.info Реклама на сайте