Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Изменение свойств материала во времени

Широко используют ударные испытания и в других отраслях промышленности, а также для контроля состояния металла, изменяющего (ЗОИ свойства в процессе эксплуатации. Такие испытания предусмотрены во всех правилах котлонадзора, особенно для случаев работы в условиях, способствующих изменению свойств материала во времени (температурное воздействие, вибрация, действие агрессивных сред и т.п.).  [c.15]

Основные закономерности малоциклового деформирования в настоящее время уже достаточно хорошо изучены [7, 35, 43, 44, 101, 122, 123], и результаты этих исследований кратко обсуждены в гл. 1. В данном разделе рассматриваются особенности деформирования и разрушения конструкционных материалов при высоких температурах, когда проявляются температурно-временные аффекты ползучесть, релаксация и структурные изменения материала. Особое внимание уделено исследованиям при циклическом нагружении в условиях интенсивного деформационного старения, сопровождающегося сильным изменением прочностных и пластических свойств материала во времени. Причем интенсивность и характер этих изменений зависят также и от условий деформирования, и в первую очередь от формы цикла и частоты нагружения. Учет изменений пластических свойств во времени, определяющих сопротивление материала малоцикловому и длительному статическому разрушению, требует проведения сложных экспериментов в условиях, приближающихся к эксплуатационным, во многих случаях характеризующихся сильным протеканием деформационного старения.  [c.166]


На основании указанных выше соображений, а также принимая во внимание, что процесс старения, т. е. изменение физико-механических свойств материала во времени, может считаться не зависящим от процесса деформации, Н. X. Арутюнян (1947, 1952) предложил представить меру ползучести С ( , т) для стареющего материала в виде произведения двух функций, одна из которых учитывает процесс старения материала, а другая — влияние длительности его нагружения, т. е. в виде  [c.183]

Лопатки компрессоров. На лопатки как осевых, так и центробежных компрессоров обычно действуют значительные вибрационные нагрузки. В связи с этим основными требованиями являются высокая усталостная прочность материала и его способность к демпфированию колебаний. Поскольку в компрессорах конструкционное демпфирование играет сравнительно меньшую роль по сравнению с аэродинамическим, а иногда и демпфированием в материале, то выбор материала лопаток и режима его термообработки проводят с учетом требования получения декремента затухания максимально возможного значения. Следует иметь в виду, что логарифмический декремент затухания колебаний у широко применяемых для лопаток хромистых сталей с повышением температуры, уровня вибрационных и растягивающих напряжений увеличивается. Тем не менее вибрационные напряжения в рабочих лопатках иногда достигают 200 МПа. Так, повреждения от ударов посторонним предметом или коррозионные повреждения (коррозионное растрескивание) являются концентраторами, резко снижающими усталостную прочность лопаток. Поэтому используются все меры, позволяющие повысить предел усталости, в частности соответствующая обработка поверхности. Требования коррозионной стойкости материала и его сопротивления коррозионной усталости являются особенно важными для компрессоров газовых турбин, работающих в морских условиях. Материал компрессорных лопаток, работающих на загрязненном воздухе, должен противостоять эрозии. В противном случае сопротивление эрозии должно обеспечиваться применением специальных покрытий. Под действием центробежных сил в лопатках возникают растягивающие напряжения, поэтому материал должен также обладать определенным уровнем прочностных свойств при рабочих температурах. Особенно существенным становится это требование для высокооборотных компрессоров. В компрессорах с большими степенями сжатия температура лопаток может достигать уровня, при котором необходимо учитывать изменение характеристик материала во времени, в частности сопротивление ползучести.  [c.40]


Необходимость проводить в первую очередь экспериментальные исследования различных аспектов сопротивления материалов обусловлена тем, что разупрочняющее влияние перечисленных выше факторов, имеющих место в эксплуатации, нельзя учесть расчетным путем. Чтобы правильно учесть влияние этих факторов на показатели конструктивной прочности материалов, нужно поставить соответствующие хорошо продуманные экспериментальные исследования по методикам, разработка которых часто представляет самостоятельный научный интерес. К тому же установить соответствующие аналитические критериальные зависимости можно только на основе большого количества экспериментальных данных о свойствах материала. Получают их при испытаниях изготовленных из этого материала специальных образцов в тех или иных условиях силового и теплового воздействий заданной длительности и режима изменения этих воздействий во времени.  [c.662]

Чтобы получить некоторые из приведенных ранее результатов, необходимо предположить, что коэффициент k, фигурирующий в уравнении (5.47), также изменяется во времени. Введение этой зависимости позволяет отразить изменения свойств материала в направлении кончика трещины и влияние касательных напряжений на рост трещины [25, ч. IV]. Таким образом, хотя в этой главе и рассматривались только деформации нормального отрыва в кончике трещины, полученные результаты в действительности обладают большей общностью. Возможно, что на практике задачу определения размера трещины придется решать при помощи итерационной процедуры, так как к зависит от роста трещины по мере изменения ее ориентации.  [c.214]

На основе проведенного анализа была решена задача о распределении температурных полей в цилиндрическом сварном патрубке реактора ВВЭР-440 в режиме эксплуатационного расхолаживания со скоростью 30°С/ч. Изменение температуры теплоносителя во времени показано на рис. 5.1. Коэффициент конвективного теплообмена с корпусом реактора определялся в соответствии с выражением (3.36). Внешняя поверхность реактора теплоизолирована. Начальная температура корпуса принята равной 300°С. Теплофизические свойства материалов на рассматриваемом интервале времени D, 2,5 ч меняются незначительно и составляют для материала корпуса реактора к = 33 ккал/м-ч -°С, р = 7,8 10 кг/м , с = 0,14 ккал/кг °С, для остальной части конструкции (наплавка, сварной шов) f = 15 ккал/м ч °С, р = 7,9 10 кг/м , с = 0,13 ккал/кг °С, коэффициент конвективного теплообмена h = 0,097 кал/см с . Задача нестационарной теплопроводности решалась в линейной постановке с использо-  [c.175]

Структурные представления можно использовать не только для уточнения физического смысла функции повреждения, но также и для определения границ применимости феноменологических методов описания процесса повреждения. В частности, по структуре дифференциальных уравнений для функции повреждения [6, 7] видно, что переход от ранней (микроскопической) стадии разрушения материала к поздней (макроскопической) стадии осуществляется при значении функции повреждения, равном единице. При этом скорость изменения функции повреждения во времени становится бесконечно большой, ибо происходит потеря устойчивости процесса повреждения. Это обстоятельство представляется недостаточно обоснованным из физических соображений, если исходить из структурных представлений. В зависимости от конкретных физических свойств материала и способов его нагружения вероятность разрушения частицы микроструктуры на границе между микроскопической и макроскопической стадиями (предельная вероятность) может иметь различные значения, меньшие единицы. Например, потеря устойчивости процесса повреждения может наступить при значении функции повреждения, равном 0,5. При этом функция изменяется скачком от значения 0,5 до значения 1.  [c.5]

В реальных схемах многоинструментной обработки действие сил весьма сложно и не постоянно во времени. В партии обрабатываемых заготовок силы резания зависят от изменения свойств материала заготовок и колебания припусков на обработку. На протяжении одного-рабочего цикла обработки отверстия траектория движения режущего лезвия изменяется под влиянием циклового изменения действующих сил от неравномерности глубины резания на длине рабочего хода и на одном обороте инструмента при снятии неравномерного припуска.  [c.474]


Для установления скорости коррозии материала в данной среде обычно ведут наблюдение за изменением во времени ка-кой-либо характеристики, отражающей изменение свойств материала, например за изменением массы металла, объема выделяющихся или поглощающихся газов, изменением механических или электрических свойств металла и др.  [c.247]

Даже при одноосном постоянном во времени нагружении компоненты армированного пластика находятся в условиях непрерывно меняющегося сложного напряженного состояния, что вызывается их реономными свойствами и структурой материала. Следовательно, для описания длительной прочности компонентов необходимо использование критериев, учитывающих изменение напряженного состояния во времени.  [c.302]

Все процессы, приводящие к некоторому изменению свойств материала, описываются в рассматриваемой модели с помощью тензора оператора поврежденности П, компоненты которого однозначно определяются процессом деформирования (нагружения). Это означает, что в общем случае тензор напряжений в лн ой момент времени может быть определен, если известны значения тензора деформаций во все предшествующие времена. Б случае, когда для определения напряжений достаточно знания деформаций только в настоящий момент времени, тензор П является функцией. Зависимость свойств материала от температуры или других факторов также может быть учтена с помощью тензора поврежденности.  [c.102]

При оценке и прогнозировании светостойкости полимерного материала необходимо учитывать, что изменение свойств полимерного материала во времени происходит по сложным законам. Это отчасти обусловлено тем, что степень старения определяется не только дозой действующего света, но и другими факторами, включая интенсивность и спектральный состав света, температуру, механические напряженная и др. 11].  [c.373]

Характер изменения силы трения покоя от продолжительности неподвижного контакта определяется главным образом свойствами более пластичного материала (рис. 8). Изменение силы трения во времени происходит менее интенсивно у материалов с большим модулем упругости и с большей скоростью последействия (изменения напряженного состояния при постоянной деформации).  [c.20]

Один из основных вопросов, рассматриваемых в теории тепловых процессов при сварке, — определение условий, при которых достигаются необходимый нагрев изделия и его сваривание. Однако этим не исчерпывается назначение теории. Нагрев и охлаждение вызывают разнообразные физические и химические процессы в материале изделия — плавление, кристаллизацию, структурные превращения, объемные изменения, появление напряжений и пластических деформаций. Эти процессы приводят к глубоким изменениям свойств и состояния материала и влияют на качество всей конструкции в целом. Чтобы определить характер протекания указанных процессов, необходимо знать распределение температур в теле и изменение его во времени в каждом отдельном случае. Это второй основной вопрос, рассматриваемый в теории тепловых процессов при сварке.  [c.139]

Движение, в философском смысле,— это всякое происходящее в пространстве и во времени изменение реальности, всякий процесс. Движение является основным, неотъемлемым свойством материи. Движущаяся материя существует извечно и не может быть ни создана, ни уничтожена. Пространство и время неотделимы от движущейся материи и являются объективными формами ее существования.  [c.5]

Следует подчеркнуть, что для одного и того же материала сопротивление усталости зависит от типа напряженного состояния (растяжение, кручение, изгиб и т. д.) и от характера изменения напряжений во времени, т. е. от вида цикла я частоты колебаний. Кроме того, сопротивление усталости зависит от температуры (особенно для полимерных материалов), от свойств внешней среды, в частности влажности воздуха, а также от размеров образца и наличия в нем различных концентраторов напряжений, например надрезов.  [c.420]

Возможность применения спектрального анализа сигналов ВТП определяется тем, что в процессе воздействия монохроматического электромагнитного поля на объект в сигналах ВТП появляются составляющие частот, отличающиеся от частоты первой гармоники генератора. Это может происходить за счет проявления нелинейных свойств материала изделия или за счет изменения во времени каких-либо факторов контроля. В первом случае возникают кратные гармоники основной частоты, которые несут дополнительную информацию о свойствах объекта. Метод, основанный на анализе параметров кратных гармонических составляющих, называется методом высших гармоник. Он получил применение при контроле ферромагнитных материалов. Во втором случае возникает модуляция выходного напряжения ВТП изменяющимися параметрами объекта, возникает спектр частот сигнала. Метод, основанный на обработке спектра модуляционных колебаний, называют модуляционным.  [c.136]

Из всех известных свойств тел энтропия—единственная физическая величина, которая однозначно изменяется со временем — возрастает в закрытых системах. Иногда этот факт истолковывается как причина необратимого изменения времени от прошлого к будущему. Однако не следует забывать, что энтропия всего лишь частное свойство материи, а время — ее всеобщий атрибут, проявляющийся на всех структурных уровнях. Кроме того, в открытых системах (например, в живых организмах) и в микромире возможны процессы с уменьшением энтропии, а время и здесь изменяется необратимо от прошлого к будущему. Даже в закрытой в тепловом отношении системе, где через некоторое время устанавливается тепловое равновесие и достигается максимальная энтропия, не прекращается взаимодействие атомов, молекул и других частиц, а также взаимодействие их с внешними объектами через посредство электромагнитных, гравитационных полей и нейтрино. Все эти процессы протекают во времени. Следовательно, рост энтропии нельзя считать причиной необратимости времени. Последняя заключается в несимметричности — необратимости причинно-следственных отношений во всех системах. В противном случае, например, дым и свет от сгоревших  [c.181]


Предполагается, что, кроме названных выше основных эффектов, связанных с наличием окалины, на свойства материала подложки вблизи поверхности могут влиять и другие поверхностные факторы. В частности, модуль упругости и параметры решетки очень тонкого ( 30 А) приповерхностного слоя могут изменяться в результате адсорбции атомов газовой фазы [114]. На подобные эффекты ссылаются при объяснении ухудшения механических свойств поверхностных слоев некоторых неметаллических твердых материалов под влиянием адсорбции во влажных средах [136]. Наглядной иллюстрацией служит рис. И, где представлены данные об уменьшении временного сопротивления серебряной проволоки при высоких температурах в атмосферах различных газов (изменения наиболее велики в случае более тонкой проволоки) [137].  [c.31]

Процесс формирования предельного состояния по условиям образования макротрещины, тип и степень малоцикловых повреждений при повторных термомеханических воздействиях определяются циклами температур и нагрузки, их сочетанием, а также циклическими и статическими свойствами материала. В значительной степени сопротивление усталости при длительном малоцикловом нагружении связано с деформационной способностью материала, изменением ее во времени в процессе старения при высоких уровнях циклических или постоянных температур.  [c.26]

Ниже при рассмотрении исследования моделей из вязкоупругих материалов будет показано еще одно преимущество тарировки на самой исследуемой модели. В линейно вязкоупругих материалах картина изохром изменяется со временем таким образом, что отношение порядков полос для любых двух точек в ноле наблюдения остается постоянным. Тарировка на специальных тариро-вочных образцах требует тщательного изучения изменения свойств материала во времени. Тарировка же на исследуемом образце автоматически исключает влияние времени.  [c.86]

В некоторых случаях наблюдается изменение механических свойств материала во времени при неизменных внешних условиях и при отсутствии внешних нагрузок. В бетоне изменение свойств обусловлено длительными химическими процессами, происходящими в цементном камне в пластмассах, каучуках и других материалах органического происхождения — медленно протекающими окислительными процессти. Последние приводят к тому, что через более или менее продолжительный промежуток времени указанные материалы не могут быть использованы как конструкционные. Явление изменения  [c.435]

Параметры функции подобия существенно зависят от температуры и в первом приближении могут приниматься не зависящими от характера нагружения и напряженного состояния. Эти параметры определяются поцикловым и во времени изменением свойств материала (упрочнение, разупрочнение, стабилизация, накопление односторонней деформации).  [c.274]

Изменения параметров изделий во времени, обусловленные происходяш,имп в них физико-химическими процессами, являются наиболее общей причиной отказов деталей. Процесс возникновения отказа представляет собой, как правило, некоторый временной кинетический процесс, внутренний механизм и скорость которого определяются структурой и свойствами материала, напряжениями, вызванными нагрузкой, и в большинстве случаев температурой. Вследствие этого классификация отказов технических устройств по их физической природе должна представлять собой прежде всего классификацию физико-химических процессов, непосредственно или косвенно влияющих на работоспособность деталей и возникновение отказов, а также классификацию условий протекания процессов. Такая классификация процессов может быть проведена по следующим признакам [66] по типу (классу) материала детали, по месту протекания процессов, влияющих на работосиособность детали, по виду энергии, определяющей характер процесса, по типу эксплуатационного воздействия, по характеру (внутреннему механизму) процесса  [c.35]

Большинство деталей машин (валы, шестерни, болты, рамы, упругие элементы и т. д.) в процессе работы подвергаются воздействию напряжений, переменных во времени. Если уровень переменных напряжений превосходит определенный предел, то в материале деталей происходит процесс постепенного накопления повреждений, который приводит к образованию субмикроскопиче-ских трещин. Длина этих трещин увеличивается, затем они объединяются, образуя первую макроскопическую трещину, под которой понимается трещина протяженностью 0,1—0,5 мм. У корня этой трещины возникает местное увеличение напряжений, называемое концентрацией напряжений, которое облегчает ее дальнейшее развитие. Трещина, постепенно развиваясь и ослабляя сечение, вызывает в некоторый момент времени внезапное разрушение детали, которое нередко бывает связано с авариями и весьма тяжелыми последствиями. Указанный процесс постепенного накопления повреждений в материале детали под действием переменных напряжений, приводящих к изменению свойств материала, образованию, развитию трещин и разрушению детали называют усталостью материала.  [c.7]

Восстанавление — изменение значения деформации во времени после снятия нагрузки с образца. Теоретические основы этого процесса [15] позволяют предполагать, что энергия, накопленная в напряженном образце в потенциальной форме, переходит в процессе самопроизвольного восстановления образца в кинетическую. На скорость восстановления влияют не только упругие свойства материала, но и релаксационные процессы и внутреннее трение. Способность резины восстанавливать свои размеры и форму после снятия нагрузки определяется теми же  [c.11]

Здесь уместно сделать одно замечание относительно эффективности вычислений. Еслн упругие мгновенные свойства материала не изменяются во времени (и на них ие влияет изменение во времени температуры), то очевидно, что многократно будет применяться один и тот же метод нахождения упругого решения. В таких случаях удобнее хотя бы частично обращать матрицы, встречающиеся при решении, чем использовать итера-цнонные методы решения. И наоборот, если упругие свойства меняются во времени и на каждом отрезке времени приходится решать существенно различные задачи теории упругости, то целесообразнее использовать итерационные методы решения, принимая за начальное приближение полученные ранее значения перемещений.  [c.421]

Термореологически простые материалы. Результаты экспериментов на разнообразных вязкоупругих материалах позволяют выделить важный подкласс материалов с памятью, обычно называемых термореологически простыми материалами ). А именно среди аморфных высокополимеров, которые при заданной постоянной (во времени и в пространстве) температуре приближенно подчиняются законам линейной и нелинейной вязкоупругости, есть группа материалов, свойства которых меняются особенно просто при изменении температуры кривые, характеризующие зависимость свойств материала от времени при разных постоянных температурах, построенные в логарифмической шкале времени (по оси абсцисс откладывается 1п I), получаются друг из друга сдвигом. Это явление представляет собой основную характеристику термореологически простых материалов она позволяет установить отношение эквивалентности между температурой и 1п 1.  [c.397]

В связи с тгм, что до сих пор нет такого ун шерсальиого по- <азателя пластичности материала, который учитывал бы химический состав, структуру, механические свойства материала, тип напряженного состояния, скорость деформации, температуру, при которой проводится деформация, вероятность изменения ее в процессе, во времени деЛормации и т.п. надо пользоваться имеющимися показателями пластичности, учитывая определенные условия деформирования и конкретные данные, характерные для дефорыирувиюго ште-риала.  [c.28]


Старением материалов называются процессы изменения их физико-механических свойств во времени в условиж длительного хранения или эксплуатации. Старение можно рассматривать как физическое явление и как операцию термической обработки. Обычно старение обусловлено недостаточно стабильным (неравновесным) состоянием материала и постепенным его переходом в стабильное (равновесное) состояние.  [c.124]

Последовательность различных курсов как общей, так и теоретической физики определяется прежде всего постепенным переходом к изучению все более сложных форм движения соответствующих структурных видов материи (макротела, молекулы, атомы, элементарные частицы и поля). Механика изучает закономерности простейшей формы движения — относительного перемещения тел в пространстве во времени. Термодинамика и статистическая физика рассматривают явления, обусловленные совокупным действием огромного числа непрерывно движущихся молекул или других частиц, из которых состоят окружающие н с тела. Благодаря очень большому количеству частиц беспорядочное их движение приобретает новые качества макроскопические свойства систем из большого числа частиц в обычных условиях совершенно не зависят от начального положения этих частиц, в то время как механическое состояние системы существенно зависит от начальных условий. Это один из примеров диалектического закона перехода количестЕ енных изменений в качественные возрастание количества механически движущихся частиц в системе порождает качественно новый вид движения — тепловое движение. Тепловое движение представляет собой изменения системы, обусловленные ее атомистическим строением и наличием огромного числа частиц оно связано с молекулярным механическим движением, но этим не исчерпывается его сущность. Всякое движение, — писал Ф. Энгельс, — заключает в себе механическое движение, перемещение больших или мельчайших частей материи познать эти механические движения является первой задачей науки, однако лишь первой ее задачей. Но это механическое движение не исчерпывает движения вообще. Движение — это не только перемена места в надмеханических областях оно является также и изменением качества. Открытие, что теплота представляет собою некоторое молекулярное движение, составило эпоху в науке. Но если я не имею ничего другого сказать о теплоте кроме того, что она представляет собой известное перемещение молекул, то лучше мне замолчать . Определяющим для возникновения теплового движения является не механическое движение от-  [c.7]

Трибология - наука о трении и процессах, сопровождающих трение [1]. Трибология как научная дисциплина охватывает экспериментально-теоретические исследования физических (механических, энергетических, тепловых, магнитных), химических, биологических и других явлений, связанных с трением. Получили развитие новые разделы трибологии трибофизика, трибохимия и трибомеханика. Для оценки трения необходимо учитывать взаимосвязь и взаимоотношения между контактирующими телами, внешними энергетическими воздействиями, накоплением и рассеянием энергии, а также последствия трибологических процессов. Процессом называется последовательность изменений свойств и состояний системы или ее элементов во времени, которые могут происходить одновременно и последовательно и приводить к изменению химического состава и строения материала (химические, ядерные изменения) либо энергетического состояния и свойств (физические изменения). Трибологические процессы являются вьшужденными, они могут быть обратимыми (упругая деформация, повышение температуры) и необратимыми (пластическая деформация, изнашивание).  [c.7]

Величина у может зависеть, вообще говоря, от характера деформированного состояния в месте образования разрыва, от температуры и других термодинамических характеристик состояния частиц и от их изменения во времени, от влияния физико-химических свойств внешних сред (если сделать допущение, что (5 = 0), от наличия в теле дефектов, дислокаций и т. п. В простейших случаях в качестве приближения можно принять, что у = onst, причем величина этой постоянной представляет собой важнейшую физическую прочностную характеристику материала. При изучении проблем прочности экспериментальное и, может быть, теоретическое исследование величины у должно составлять главную задачу.  [c.537]

Измерение микротвердости и микроструктуры в де-формированном поверхностном слое образца показало резкую неравномерность ее распределения и различную степень пластической деформации. Формирование структуры рабочего слоя в процессе удара определяется исходной структурой материала, продолжительностью времени контакта, контактной температурой, скоростью приложения нагрузки. При и = 3,2 м/с и W== ,2 Дж максимальная микротвердость на поверхности удара составляет 12 000 МПа, минимальная — 4200 МПа. Измерение микротвердости по поверхности и по глубине образца после удара показало, что распределение микротвердости в зоне удара неравномерное. Неравномерно распределяется и температурное поле. Динамический характер пластического деформирования, во время которого теплообмен в зоне контакта практически отсутствует, вызывает на пятнах фактической площади контакта мгновенные скачки температуры, т. е. температурные вспышки, величина которых при тяжелых режимах намного превышает среднкно температуру. Несмотря на то, что глубина действия температурных вспышек при ударе локализуется в слое толщиной несколько микрометров, они способствуют структурным превращениям и изменению микротвердости. В некоторых случаях удалось наблюдать полоски вторичной закалки. Их микротвердость составила 12 880 МПа. Микротвердость подстилающего слоя на расстоянии 0,01 мм от поверхности меньше мик-ротвердости металлической основы и составляет 3300 МПа, что соответствует приблизительно температуре 400 500° С. Следовательно, при единичном ударе в зоне контакта в отдельных микрообъемах возникают температурные скачки, упрочняющие эти участки. Под ними и вблизи них находятся участки, микротвердость которых ниже исходной, а температура достигает лишь температуры отпуска. Наблюдаемые температурные изменения связаны с изменениями структуры и прочностных свойств соударяющихся материалов.  [c.146]

Исследование скорости развития трещины в зависимости от уровня нагружения, свойств материала, среды и внешних факторов (поляризации, давления и температуры) [8,50]. При таком подходе данные о закономерностях роста трещин иод воздействием агрессивной среды и механических напряжений представляют в виде зависимостей скорости роста трещин при статическом (ко розионное растрескивание) или- динамическом (коррозионная усталость) нагружении от максимального (амплитудного) коэффициента интенсивности К цикла. При этом данные для построения указанных зависимостей (диаграмм разрушения) получают при испытании стацдаргных образцов с трещинами, образовавшимися на образцах в процессе периодического (усталостного) нагружения их на воздухе. Подрастание трещины во времени измеряют по изменению электросопротивления образца, оптическим методам по податливости материала и т. п. Испытания проводят iipn заданной температуре среды, накладывая, по необходимости, на образец анодную или катодную поляризацию. По полученнь м данным рассчиты-  [c.132]

Некоторое подобие реальным режимам нагружения воспроизводится опытами на термическую усталость с выдержками в высокотемпературной части цикла на установках Коффина [1—9] такие же режимы нагружения могут быть приближенно оценены опытами на изотермических малоцикловых y TanoBitax без следящей системы нагрунсения [10]. Существенная нестационарность процесса упругопластического деформирования при таких испытаниях связана главным образом с изменением соотношения жесткости системы машина — образец в результате кинетики свойств материала, перераспределения температурных полей как по циклам, так и во времени. В связи с этим фактическая величина деформаций существенно нестационарна и поэтому особое внимание при оценке условий разрушения должно быть уделено определению действительной величины циклической деформации [11].  [c.86]

Одной из причин разрушения пластмассовых материалов и изделий из них являются процессы, протекающие во времени и сопровождаемые разрывами химических связей в главных цепях макромолекулы материала. В результате этого макромолекулы размельчаются (деструктируются), изменяется их молекулярный вес и, как следствие, происходит изменение физико-механических свойств материала. Деструкция пластмасс во времени и представляет собой их старение.  [c.126]


Смотреть страницы где упоминается термин Изменение свойств материала во времени : [c.100]    [c.380]    [c.404]    [c.250]    [c.17]    [c.204]    [c.106]    [c.327]    [c.330]    [c.263]    [c.100]    [c.763]   
Прикладная механика твердого деформируемого тела Том 1 (1975) -- [ c.380 ]



ПОИСК



Изменение свойств

Свойства материалов



© 2025 Mash-xxl.info Реклама на сайте