Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Поверхность лагранжиана

Здесь Z,. — текущие координаты величины Хг — обычные постоянные, так как наша геометрия осуществляется в касательном пространстве >2л+1. Будем называть — поверхностью лагранжиана, а <5я — поверхностью гамильтониана.  [c.232]

Рис. 33. Соотношение взаимности между поверхностью лагранжиана Sj п поверхностью гамильтониана S/J.  [c.233]

Пусть на груз дополнительно действует зависящая от времени сила Ф(/). У груза одна степень свободы. Связи (гладкая поверхность) являются идеальными. Составим для движения груза уравнение Лагранжа, приняв х за обобщенную  [c.446]


Метод множителей Лагранжа. Наложенные на точку связи могут удерживать ее на какой-нибудь поверхности или кривой. Рассмотрим, как при этом составляются уравнения, определяющие положение равновесия точки с помощью множителей Лагранжа.  [c.284]

Физический смысл множителей Лагранжа. Пусть точка находится на поверхности  [c.289]

Наиболее значительного сокращения числа неизвестных в многокомпонентной многофазной системе можно достичь, исключая из (22.9) все переменные. ....n. Такая возможность представляется благодаря особой, седловидной форме поверхности функции L(n, к) вблизи экстремума и ввиду очевидного термодинамического смысла множителей "к (см. (16.20)). Вычислительный процесс при этом организуется иначе вместо минимизации функции L в пространстве переменных п ведется поиск максимума этой функции по переменным к. Такую замену называют переходом от решения прямой задачи к решению сопряженной с ней двойственной задачи. В теории выпуклого программирования доказывают теоремы, позволяющие из формулировки прямой задачи по стандартным правилам составить соответствующую ей двойственную. В общем случае часть целевой функции двойственной задачи, от которой зависят координаты максимума, представляет собой функцию Лагранжа прямой задачи, а вместо ограничений л/< >>0 в прямой задаче выступают ограничения (22.10) в двойственной. Для рассмотренного выше частного примера из области линейного программирования двойственная к (22.2), (22.3) задача формулируется следующим образом найти максимум функции  [c.188]

Эти дифференциальные уравнения называют дифференциальными уравнениями Лагранжа первого рода для движения несвободной материальной точки. Из этих трех дифференциальных уравнений и одного конечного уравнения — уравнения поверхности / х, у, г) = О можно найти четыре неизвестных — координаты точки х, у, ги неопределенный множитель Лагранжа о как функции времени и произвольных постоянных интегрирования. Произвольные постоянные определяются из начальных условий.  [c.226]

По найденному неопределенному множителю Лагранжа Х легко определить величину силы реакции поверхности, которая равна N = Д/ и в общем случае зависит от времени.  [c.226]

Присоединяя к дифференциальным уравнениям Лагранжа первого рода (13) два конечных уравнения поверхностей Д х, у, г) = 0 и , 2 (х, у, г) == о получаем пять уравнений для определения пяти величин X, у, 2, %2 как функций времени. Таким образом, и в этом случае  [c.227]


Если наклонную плоскость заменить силами реакций связей, то оставшиеся связи окажутся идеальными, но появится дополнительная степень свободы у груза О. Можно сделать связи системы идеальными, считая наклонную плоскость идеально гладкой, а шероховатость ее поверхности и поверхности груза О компенсировать силой трения. В этом случае дополнительной степени свободы не появится. Связи у системы окажутся идеальными н для ее движения можно составить уравнения Лагранжа  [c.369]

По найденному неопределенному множителю Лагранжа X легко определить силу реакции поверхности N = XAf, которая в общем случае зависит от времени.  [c.246]

Присоединяя к дифференциальным уравнениям Лагранжа первого рода (19) два конечных уравнения поверхностей /, (х, у, 2) = О и /2 У< 2) = О, получаем пять уравнений для определения пяти величин X, у, 2, Хз как функций времени. Таким образом, и в этом случае поставленная задача может быть разрешена. Она принципиально разрешима и при учете силы трения.  [c.247]

Пусть на груз дополнительно действует зависящая от времени сила Ф (). У груза одна степень свободы. Связи (гладкая поверхность) являются идеальными. Составим для движения груза уравнение Лагранжа, приняв X за обобщенную координату, отсчитываемую от положения груза, при котором пружина не деформирована. Имеем  [c.433]

Пусть обобщенными координатами будут расстояния Г1 и Гг материальных точек от оси вращения Ог, Потенциальную энергию можно положить равной нулю, так как движение происходит в эквипотенциальной поверхности. Тогда функция Лагранжа определится равенством  [c.135]

Условия (4.247) позволяют дать механическую интерпретацию введенным множителям Лагранжа совокупность множителей представляет собой совокупность координат тензора напряжений, la —плотность вектора напряжений на части поверхности 5 .  [c.205]

Уравнения Лагранжа первого рода могут быть применены для изучения движения точки по поверхности или кривой. Если поверхность, в общем случае как угодно движущаяся и деформирующаяся, задана уравнением  [c.387]

В только что рассмотренных примерах определить реакции можно было и без применения уравнений Лагранжа первого рода, непосредственно составляя условия равновесия движущейся точки под действием силы тяжести, реакции и центробежной силы инерции. Метод множителей Лагранжа оказывает существенную пользу в тех случаях, когда поверхность или кривая не обладают теми простыми геометрическими свойствами, как сфера или окружность покажем это на следующем примере.  [c.392]

Это — дифференциальные уравнения движения точки по неподвижной поверхности в форме Лагранжа со множителем. Они представляют собой четыре уравнения относительно четырех неизвестных X, у, Z, к.  [c.294]

Помимо рассмотренных принципов Лагранжа и Кастильяно в теории упругости известно еще несколько вариационных принципов, отличающихся выбором варьируемых функций. Все они могут быть получены, если идти по некоторому формальному пути [30]. В основе его лежит следующее тождество, выражающее переход от интегрирования по объему к интегрированию по поверхности, доказываемое с применением формулы Гаусса — Остроградского  [c.67]

Пользуясь интегралом Лагранжа, распределение давления на контактной поверхности представим в виде  [c.190]

В основу изучения кинематики жидкости положена гипотеза о непрерывности изменения кинематических параметров потока. Иногда это свойство может нарушаться, например в особых точках, на линиях или поверхностях разрыва. При кинематическом исследовании жидкой среды используют либо метод Лагранжа, согласно которому рассматривают движение индивидуальных жидких частиц и определяют для каждой из них траектории, т. е.  [c.39]

Для вывода вариационного принципа Кастильяно, рассмотрим воображаемое напряженное состояние бац такое, что j = О, = О, xi е 5т. Значения, которые принимают величины 8ац на части поверхности 5ц, могут быть произвольны. Поскольку состояние 5ац удовлетворяет условиям равновесия, составим уравнения равновесия в форме Лагранжа, приняв за виртуальные перемещения истинные перемещения щ ж соответствующие  [c.259]


ОНО соответствует нулевым скоростям на части поверхности Sy. Составим уравнение равновесия в форме Лагранжа  [c.490]

Теорема о верхней оценке несущей способности. Пусть I — произвольное кинематически допустимое поле скоростей и скоростей деформации, т. е. такое поле, которое удовлетворяет граничным условиям ui = V на части поверхности Sv. По заданным скоростям деформации Бу определяются напряжения сгу единственным образом, если поверхность напряжения строго выпукла. Напряжения о у вообще не удовлетворяют уравнениям равновесия. Выпишем уравнения равновесия в форме Лагранжа, принимая за поле виртуальных скоростей  [c.492]

Найдем теперь давление по обе стороны от поверхности раздела жидкости, используя решение уравнения (1.2.8) в форме Коши—Лагранжа  [c.51]

В указанный период существенный вклад в дело развития механики жидкости внесли также два выдающихся французских математика того времени Ж. Лагранж (1736—1813), который ввел понятие потенциала скорости и исследовал волны малой высоты, и П. Лаплас (1749—1827), создавший, в частности, особую теорию волн на поверхности жидкости.  [c.28]

Этот способ рассмотрения пригоден и в тех случаях, когда жидкость имеет другие границы, кроме 2, и когда движение жидкости не потенциально. Замечательно, что для потенциальных движений несжимаемой жидкости, занимающей все пространство, внешнее к поверхности 2, интегралы (16.1) для любой данной формы тела, задаваемой поверхностью 2, с помощью интеграла Коши — Лагранжа можно выразить через компоненты и Q и их производные по времени.  [c.201]

Уравнения Лагранжа. Метод Лагранжа, который мы сейчас изложим, сходен с тем, которым мы пользовались для изучения движения точки по кривой (п. 259). Всегда возможно выразить координаты точки поверхности 5 и. в частности, движущейся точки М, в функции двух параметров и q.y.  [c.410]

Вывод уравнения кинетической энергии из уравнений Лагранжа. Если поверхность неподвижна, то выражения х, у, г в функции и- 2 могут быть выбраны таким образом, чтобы они не содержали ( явно. Тогда Т.будет однородной квадратичной функцией  [c.418]

Геодезические линии поверхностей вращения. Мы ставили целью составить два уравнения, не содержащих нормальной реакции, и получили в качестве таковых уравнение кинетической энергии и одно из уравнений Лагранжа. В случае движения точки на поверхности вращения мы всегда будем иметь два не зависящих от реакции уравнения, применив теорему кинетической энергии и теорему момента количества движения относительно оси вращения, так как нормальная реакция лежит в одной плоскости с осью вращения и ее момент относительно этой оси равен нулю. Приложим, в частности, этот метод к определению геодезических линий поверхностей вращения.  [c.428]

Уравнения Лагранжа. В предыдущих главах мы вывели для точки, движущейся по неподвижной или движущейся поверхности или по кривой, уравнения движения, указанные Лагранжем. Тот же метод позволяет написать уравнения движения свободной точки, причем в любой системе координат. Этот метод тем более важен, что он применим к движению произвольной голономной системы.  [c.447]

Историческая справка. Уравнения движения свободной точки или точки, движущейся по поверхности или по кривой как подвижным, так и неподвижным, были составлены Лагранжем в одинаковой для всех этих случаев форме с той лишь разницей, что число параметров, подлежащих определению в функции времени, равно трем для свободной точки, двум для точки на поверхности, и одному для точки на кривой (пп. 259, 263, 282). Мы увидим дальше, что уравнения самой общей задачи динамики системы могут быть составлены в этой же форме, но число параметров б) дет каким угодно, при условии, что связи могут быть выражены, в конечной форме и что эта параметры действительно являются координатами.  [c.466]

Подобным же образом, повторяя рассуждения 73, 74, можно показать, что небольшой участок плоскости, расположенный в первой среде перпендикулярно к оптической оси центрированной системы, изобразится в последней преломляющей среде сопряженной плоскостью, также перпендикулярной к оптической оси, причем изображение остается геометрически подобным объекту. Наличие двух ( юкусов и двух фокальных поверхностей, установленное для одной сферической поверхности, сохраняется также и для всякой центрированной системы поверхностей. Точно так же для центрированной системы поверхностей сохраняет силу и теорема Лагранжа — Гельмгольца, т. е.  [c.288]

Отсюда и пз теоремы Лагранжа следует, что если неитр тяжести теля находится ниже обоих главных центром кривизны поверхности тела н точке его касания с опорной плоскостью, то поло гкение ряииоиесия устойчиво. Если же центр тяжести лежит выше хотя бы одною из гланш.а центров кривизны, то согласно теоремам 1 и 2 Ляпунова, имеет место неустойчивость.  [c.350]

Пластиной называется тело, ограниченное двумя плоскостями Z = h и цилиндрической поверхностью, образующие которой параллельны оси z. В плоскости z = О, называемой срединной плоскостью, выбираются произвольным образом координаты Ха (а = 1,2). Предполагается, что размеры пластины в плане значительно больше, чем толщина 2h (рис. 12.4.1). Так же, как в 2.1, где речь шла о стержнях, будем принимать за 1[аимень-ший поперечный размер наименьшее расстояние между касательными к контуру пластины. Под контуром пластины понимается контур сечения цилиндрической поверхностью плоскости Z = 0. Так же, как теория изгиба балок, теория пластин может быть построена при помощи любого из вариационных принципов. Если при выводе уравнения изгиба мы отправлялись от вариационного принципа Лагранжа, то здесь мы примем за основу вариационный принцип Рейснера (не в силу каких-то его преимуществ, а для иллюстрации метода). Дело в том, что в физически нелинейной теории пластин, изготов- Рис. 12.4.1 ленных из нелинейно-упругого или пластического материала, реализация вычислений на основе принципа Лагранжа приводит к очень большим трудностям, тогда как принцип Рейснера позволяет получить приближенное решение задачи относительно просто.  [c.395]


Лагранжа добавочного гидростатического давления, выражающегося через потенциал массовых сил. Поэтому, а такяш и по другим причинам, во многих важных случаях массовые силы влияют на поле скоростей. Например, это влияние мон ет сказаться за счет граничных условий на свободной поверхности, которые формулируются с помощью интеграла Коши — Лагранжа, содержащего член, зависящий от массовых сил.  [c.208]

При дви5кении подводной лодки на большой глубине влияние существования свободной поверхности жидкости на поле скоростей вблизи тела ничтон<но мало. В этом случае наличие сопротивления связано с силами вязкого трения и с возникновением в потоке жидкости вихрей, что при малых скоростях хода обусловливается свойством вязкости воды. Если в рамках теории идеальной жидкости можно принять, что влияние свободной поверхности несущественно, то потенциал скоростей вблизи тела можно считать таким же, как и в бесконечной массе жидкости. На этом основании при установившемся поступательном движении лодки с постоянной скоростью из формулы (16.1) после подстановки в нее давления, выраженного по формуле Коши — Лагранжа, получим, что сила А будет отлична от нуля только за счет гидростатической части давления и будет точно равна силе Архимеда (см. также 8). Момент гидродинамических сил будет равен моменту силы Архимеда, определенному по правилам гидростатики, и добавочному динамическому моменту, определенному по формуле (16.15).  [c.208]


Смотреть страницы где упоминается термин Поверхность лагранжиана : [c.290]    [c.254]    [c.67]    [c.21]    [c.290]    [c.176]    [c.246]    [c.424]    [c.180]    [c.200]    [c.460]    [c.507]   
Классическая динамика (1963) -- [ c.232 , c.233 ]



ПОИСК



Лагранжиан



© 2025 Mash-xxl.info Реклама на сайте