Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уплотнения встроенные

В машиностроении находят применение разного рода комбинированные уп- лотнения, в которых используются различные типы уплотнений с контролируемым зазором и контактные уплотнения. На рис. 35, о, 6 показаны некоторые виды этих уплотнений. В условиях массового производства целесообразно применять уплотнения, встроенные непосредственно в подшипник, что обеспечивает уменьшение габаритов подшипникового узла и снижает стоимость изделия (рис. 36).  [c.97]

Подшипники со встроенными уплотнениями  [c.461]


Для предохранения подшипников качения от случайного попадания или от излишне обильной подачи жидкого масла подшипники изолируют от внутренних полостей редукторов и коробок скоростей мазеудерживающими 1 или маслоотражательными 2 кольцами. Некоторые типы подшипников качения имеют встроенные уплотнения, что упрощает конструкцию подшипниковых узлов.  [c.451]

Применяют также подшипники со встроенными уплотнениями (рис. 17.24). Подшипники с двумя защитными шайбами выпускают заправленными смазочным материалом.  [c.371]

Трубчатая тяга свинчивается с подвижной траверсой машины, снабженной встроенной месдозой. Между верхней крышкой и сосудом Дьюара, а также около трубчатой тяги имеются кольцевые уплотнения. Предусмотрена возможность откачки воздуха из внут-ренного объема и сосуда Дьюара. Деформация оценивается с помощью пропорционального дифференциального преобразователя. Смещение, которое регистрируется этим прибором, представляет собой суммарную деформацию образца и элементов конструкции устройства для испытания.  [c.371]

Рис. 40. Конструкции встроенных уплотнений шарикоподшипников Рис. 40. Конструкции встроенных уплотнений шарикоподшипников
Систем смазки для насосов реактора БОР-60 — встроенная, циркуляционная, замкнутая внутри масляной ванны. Масло из ванны подается на подшипник винтовой втулкой и стекает обратно в ванну, где охлаждается встроенным водяным холодильником. Величина подачи масла на подшипник зависит от частоты вращения насоса. Уплотнение вала по газу расположено ниже верхнего подшипника, что исключает попадание масла из верхнего подшипника в циркуляционный контур [6].  [c.122]

Торцовое уплотнение 10 блочной конструкции— двухступенчатое (с рабочей и резервной ступенями), со встроенным холодильником. Оно не имеет специальной системы запирающей воды, а питается от станционных подпиточных турбонасосов. Питательная вода (около 1 м ч) подается под нижнюю (рабочую) ступень, протечки через которую (не более 0,8 м /ч) под давлением 0,05— 1,0 МПа сливаются в специальную емкость. Протечки через резервную ступень (не более 0,025 м /ч) отводятся в линию свободного слива.  [c.274]

По оценочным данным, стоимость ГЦН осевого типа может быть в 2—2,5 раза ниже стоимости центробежного ГЦН, а уменьшение размеров деталей насоса значительно облегчает их промышленное изготовление. Вместе с тем нельзя недооценивать трудностей, неизбежных при разработке ГЦН этого типа. Насколько сложна проблема создания осевых насосов, показывает опыт работы с 1966 г, западногерманской фирмы KSB со встроенными осевыми насосами с уплотнением вала на подачу 6120 м ч и напор 27,6 м для реакторов BWR. При разработке и конструировании этих ГЦН применяли только проверенные элементы конструкции, и особое внимание уделялось тому, чтобы комбинации элементов конструкции ГЦН также имели бы проверенный необходимыми испытаниями образец [9]. Несмотря на столь продуманный подход, осевые ГЦН в 1969 г. были вновь усовершенствованы в целях повышения надежности, упрощения монтажа и технического обслуживания [10].  [c.277]


Система смазки верхнего подшипникового узла — открытая (типа масляная ванна ), с охлаждением масла встроенным трубчатым водяным холодильником. Радиальный подшипник совмещен с диском упорной пяты. Такая конструкция верхней опоры обладает простотой и высокой надежностью. Для исключения выброса активного газа в атмосферу предусматривается сильфон-ное уплотнение вала по газу. В качестве запирающей среды используется чистый аргон. Стояночное уплотнение конструкцией не предусматривается. Для уменьшения притока тепла в сторону верхних узлов вал насоса выполнен полым.  [c.286]

Во МНОГИХ современных машинах используют подшипники качения, имеюш,ие встроенное армированное резиновое уплотнение. Смазка в такие подшипники закладывается один раз при их установке и этого достаточно на весь срок их работы. Конструкция подшипника такого типа показана на рис. 303. От осевых перемеш,ений этот подшипник предохраняют два стопорных винта.  [c.353]

Для охлаждения вентилей использованы групповые водяные охладители на пять вентилей каждый. Охладитель выполнен в виде разборной конструкции, состоящей из металлического бачка и стеклотекстолитовой платы с встроенными латунными охладителями. Бачок и плата соединяются между собой через резиновое уплотнение. Латунные охладители электрически изолированы от воды тонкой пленкой лака, что позволяет избежать разрушения охладителей вследствие электролиза.  [c.214]

В практике случается, что установка самостоятельных уплотняющих устройств или смазка шариков затруднительны либо требуется упростить и сделать более компактным подшипниковый узел. Промышленность для этих случаев выпускает подшипники с одной или двумя защитными шайбами (ГОСТ 7242—70), а также со встроенными фетровыми или резиновыми уплотнениями.  [c.52]

ПНД-ЬД ( 0,6 МПа)Н-3 ПВД. Питательная вода поступает в вакуумный охладитель, где нагревается паром из крайних камер лабиринтовых уплотнений и от штоков клапанов, затем в вакуумный охладитель, в который поступает пар из промежуточных камер уплотнений. Подогреватель Hi встроен в конденсатор.  [c.102]

Характеристики подшипников основных типов. Шарикоподшипники. Шариковый радиальный однорядный подшипник (см. рис. 17.1, а) предназначен для восприятия радиальной нагрузки и осевой, действующей в обоих направлениях. Сепаратор обычно штампованный, скрепленный из двух частей заклепками, и центрируется по телам качения. Более дорогие массивные сепараторы применяют при повышенных частотах вращения и для крупногабаритных подшипников. Некоторые конструкции подшипников снабжены встроенными защитными шайбами или специальными уплотнениями, расположенными с одной или с обеих сторон подшипника. Допускаемый взаимный перекос осей колец до 8.  [c.427]

В конструировании подшипников качения наблюдается постоянная тенденция к расширению номенклатуры подшипников сверхлегких серий, игольчатых подшипников с сепараторами, высокоскоростных, со встроенными уплотнениями, с разъемными кольцами и др. Оптимизируют геометрию дорожек качения и форму роликов в целях снижения контактных напряжений. В связи с ростом требований к жесткости и точности вращения опор расширяется область применения роликовых подшипников. В настоящее время большое внимание уделяют качеству металла для подшипников качения и в первую очередь его чистоте. Для удаления примесей используют вакуумную дегазацию, электрошлаковый и вакуумно-дуговой переплав. Передовые зарубежные фирмы используют для подшипников только очищенные металлы.  [c.457]

Под статором турбины понимают неподвижные детали ее цилиндров корпуса турбин со встроенными в них корпусами подшипников (если они не выносные), обоймы для крепления диафрагм и сегментов концевых уплотнений, сами диафрагмы и сегменты уплотнений.  [c.78]

Подшипниковый узел быстроходного вала. Подшипники смонтированы в общем стакане (деталь 28). Передача осевого усилия на правый подшипник происходит от шестерни через заплечик вала на 1азеудерживаюп1,ее кольцо 22, на внутреннее кольцо правого подшипника через распорную трубку 23 на внутреннее кольцо левого подшипника. Уплотнение узла осуществляется со стороны картера редуктора мазеудерживающим кольцом 22, а на выходе — манжетным уплотнением, встроенным в крышку.  [c.347]


Промыш.т1енность выпускает несколько типов радиальных шариковых подшипников со встроенными уплотнениями.  [c.461]

Пятая или пятая и шестая справа цифры, вводимые не для всех 0д111ипник0в, обозначают конструктивные особенности подшиппикон, например угол контакта шариков в радиально-упорных подшипниках, наличие стонорной канавки на наружном кольце, иаличие встроенных уплотнений и т. д.  [c.340]

Некоторые подшипники изготовляют со встроенными односторонними или двусторонними уплотнениями (с постоянным запасом пластичной смазки), с проточками на наружном кольце для установочной (фиксирующей) шайбы или с заменяющим последнюю упорным буртом. Чаще используют штампованные сепараторы, но иногда в подшипниках, преимущественно скоростных, применяют массивные сепараторы из латуни, бронзы, дюраля или трубочного текстолита. Существуют также самосмазывающие сепараторы из АСП-пластиков и наполненных фторопластов или поликарбонатов. Некоторые типы подшипников изготовляют с одним наружным или внутренним кольцом, а также без сепаратора. На рис. 1 представлены основные конструктивные разновидности стандартных шарикоподшипников 1 — радиальный однорядный (ГОСТ 8338—75) 2 — то же, со стопорной канавкой (ГОСТ 2893—73) 3 — то же, с защитными шайбами (ГОСТ 7242—70 ) — радиальный сферический (ГОСТ 5720—75) 5 — магнетный 6 — радиально-упорный (ГОСТ 831—75) с замком на наружном кольце 7—то же, с замком на внутреннем кольце 8 — трех- или четырехконтактный (ГОСТ 8995—75) 9 — упорный одинарный (ГОСТ 6874—54 ) 10 — то же, сферический, с подкладным кольцом II — то же, двойной (ГОСТ 7872—75). На рис. 2 показаны наиболее характерные типы роликоподшипников / — без бортов на наружном кольце (ГОСТ 8328— 75) 2 — без бортов на внутреннем кольце (ГОСТ 8328—75) S — с одним бортом на внутреннем кольце (ГОСТ 8328—75) 4 — закрытый, с плоской приставной шайбой (число их разновидностей больше десяти, не считая конструктивных модификаций сепараторов, ГОСТ 8328—75) 6 — конический роликоподшипник (ГОСТ 333—П) в двух- и четырехрядном исполнении (ГОСТ 6364—68 и 8419—75) 6 — радиальный сферический двухрядный роликоподшипник (ГОСТ 5721—75) с бочкообразными телами качения 7 — игольчатый подшипник (ГОСТ 4657—71) комплектный без сепаратора (может быть и с сепаратором) S — то же, СО штампованным наружным кольцом (ГОСТ 4060—60) 9 — упор-  [c.391]

В подшипники с двусторонними встроенными уплотнениями при сборке закладывается надежная пластичная смазка на литиевой или иной основе, обеспечивающая режим трения на весь ресурс подшипника (рис. 7, а), например используют смазки ВНИИ НП, а также ОКБ-122-7, ЦИАТИМ-201, ЦИАТИМ-221 и ЦИАТИМ-221С.  [c.417]

Пластические смазки, представляющие собой тонкую механическую смесь минерального масла и мыла, получили широкое применение в подшипниковых узлах вследствие меньшей способност вытекать из корпуса, что существенно облегчает конструкщ1Ю уплотнений. Полость подшипникового узла в этом случае должна быть отделена от внутренней части корпуса, для чего используют маслосбрасывающие кольца (рис. 301). В подшипниковый узел смазку набивают через крышку или подают под давлением через масленку под шприц. В дальнейшем обычно через каждые 3 мес. добавляют свежей смазки, а через год - меняют смазку с предварительной разборкой и промывкой узла. Подшипники качения для предохранения их от загрязнения извне и предотвращения вытекания из них смазки снабжают уплотняющими устройствами. На рис. 302 изображены контактное (манжетное) уплотнение (рис. 302, а), применяемое при невысоких скоростях, обеспечивающее защиту плотным контактом деталей в уплотнениях щелевое и лабиринтное (рис. 302,6), применяемое при любых скоростях и обеспечивающее защиту вследствие сопротивления протеканию жидкости через узкие щели. Применяют также подшипники со встроенными уплотнениями.  [c.327]

С учетом изложенного при конструировании такого уплотнения для ГЦН реактора РБМК было принято двойное торцовое уплотнение (рис. 3.34) [45]. В насос и наружу давление срабатывается на одной ступени, каждая из которых способна работать при перепаде от О до 10 МПа. Запирающая вода при давлении 9 МПа подается в полость 8. Часть ее через нижнюю (контурную) ступень проходит в насос, а другая часть через верхнюю (атмосферную) сливается в специальную емкость. Контактные кольца 3 а 4, образующие уплотняющий стык, выполнены из силициро-ванного графита. Для обеспечения требуемого температурного режима в корпус уплотнения встроены два теплообменника 9 и 12. Один из них отводит тепло, идущее от основного контура по валу насоса, а второй — возникающее в трущихся элементах уплотнения. Конструкция уплотнения выполнена таким образом, что при прекращении подачи уплотняющей воды оно автоматически переходит в режим работы на контурной воде. Мощности встроенных холодильников в этом случае достаточно для поддержания температуры уплотнения в заданных пределах, поэтому время работы ГЦН в таком режиме неограничено. Уплотнение собирается в корпусе 2, и монтаж его в ГЦН осуществляется единым блоком, что дает возможность оперативно проводить замену или ремонт уплотнения (рис. 3.35). Кроме того, блок отдельно можно испытать на стенде, чтобы убедиться в его исправности .  [c.82]

Изображенная на рис. 3.40 конструкция была принята за основу при разработке УВГ для насосов реакторов БОР-60, БН-350 и БН-600, причем для насосов реакторов БН-350 и БН-600 она взаимозаменяема. Материал пар трения графит 2П-1000 (неподвижные кольца)—азотированная сталь 38ХМЮА (кольца, вращающиеся с валом). Сталь азотирована на глубину от 0,4 до 0,6 мм с твердостью верхнего слоя HR 56. Поверхность графитовых колец, кроме плоскости контакта, омеднена с последующим лужением в целях исключения утечки масла через поры графита. Удельная нагрузка на пару трения составляет 0,25 МПа. Промежуточная камера между парами трения заполняется маслом, образующим масляный затвор. Суммарные протечки масла через обе трущиеся поверхности не превышают 30 см /ч. Подпитка маслом обеспечивается бачком-питателем. Тепло в масляном уплотнении снимается водяным холодильником, встроенным в его корпус. Уплотнение выполнено в виде единого блока, устанавливаемого в сборе на вал насоса.  [c.89]


Описанная конструкция стояночного уплотнения, конечно, не единственно возможная. Например, для насоса станции теплоснабжения АСТ-500 предложено уплотнение с механическим приводом (рис. 3.44). Уплотнение втулочное, механическое, с ручным приводом и встроенными технологическими упорами И. Технологические упоры предназначены для обеспечения закрепления ротора при сборке выемной части и фиксации вала при заменах верхнего подшипникового узла и торцового уплотнения вала. Стояночное уплотнение состоит из корпуса (сталь 20X13), затвора (сталь 20X13), деталей нажимного устройства и ручного привода . Затвор перемещается в осевом направлении в направляющей втулке, В нижней части затвора закреплена плоская прокладка из теплостойкой резины. Поверхности трения имеют твердое покрытие (хромированы).  [c.93]

Прекращение подачи запирающей воды или снижение ее давления ниже давления в КМПЦ приведет к тому, что обратный клапан, стоящий на входе в уплотнение, отсечет его от системы запирающей воды, а перепускной клапан, встроенный в корпус уплотнения, сообщит его внутреннюю полость с основным контуром. Таким образом, уплотнение автоматически переходит в режим работы на контурной воде. Протечки воды из контура в количестве не более 0,01 м ч легко охлаждаются встроенными в корпус уплотнения холодильниками, а их организованный слив не представляется технически сложной задачей. При этом необходимо подчеркнуть, что работу на контурной воде допускают только уплотнения с малыми протечками, к которым относится гидродинамическое уплотнение.  [c.110]

Торцовое уплотнение вала по газу 15 обеспечивает герметичность насоса относительно внешней среды. Верхний подшипниковый узел 14 состоит из несущего корпуса, системы смазки, включающей в себя масляный насос и масляную ванну со встроенным в нее холодильником, и радиально-осевого сдвоенного шарикоподшипника. Система смазки подшипника замкнута внутри масляной ванны. Масло из ванны подается винтовой втулкой, посаженной на вал. Нижний радиальный подшипник 7 — гидростатический, камерный со взаимообратным щелевым дросселированием. Рабочие поверхности подшипника наплавлены стеллитом ВЗК. Вал насоса 10 — полый, сварен из двух частей верхняя — из стали 10X13, нижняя — из стали Х18Н9. Стояночное уплотнение 13 расположено ниже верхнего подшипникового узла 14 и в случае ремонта последнего, а также ремонта уплотнения 15 герметизирует газовые полости насоса от окружающей среды. Уплотняющим элементом стояночного уплотнения является фторопластовое кольцо, закрепленное на подвижном фланце, и конусная втулка,.  [c.164]

Насосы реактора Rapsodie (Франция) [20, 21]. Насосы первого контура центробежные, одноступенчатые, заглубленного типа (рис. 5.38), установлены на холодной ветке циркуляционного контура петлевой компоновки. Вал насоса 11 вращается в двух подшипниках нижнем (узел //) — ГСП, верхнем (узел I)—двойном роликовом радиально-осевом. В качестве привода применен асинхронный электродвигатель 15 в герметичном исполнении. Всасывание натрия организовано сверху благодаря перевернутому рабочему колесу 2. Пройдя рабочее колесо, натрий попадает в направляющий аппарат 3 и далее в напорный патрубок 21. В насос первого контура встроен обратный клапан 1, который представляет собой поплавок с запирающим диском. Питание ГСП осуществляется по сверлению в валу с напора рабочего колеса через три отверстия диаметром 12 мм и отверстие в обтекателе рабочего колеса. Чтобы избежать засорения дросселей, в обтекатель встроен сетчатый фильтр. В самом ГСП имеются дроссели диаметром 7 мм. Поверхность подшипника наплавлена колмоноем. Уплотнение вала—двойное торцовое, с масляным гид-розатвором. Охлаждается уплотнение маслом, циркулирующим в замкнутом объеме с помощью лабиринтного насоса, установленного на валу насоса. Масло охлаждается водой в холодильнике, вынесенном из корпуса насоса. Неподвижное кольцо пары трения— стальное со стеллитовой наплавкой, подвижное кольцо — графит. Ремонт верхних узлов осуществляется без разгерметизации контура. Для этой цели служит стояночное уплотнение (узел 1), состоящее из диска, герметично насаженного на вал и запрессованного в него резинового кольца. При отворачивании гайки, крепящей верхний роликовый подшипник, вал насоса скользит вниз и садится резиновым кольцом на бурт в корпусе насоса. Конструкция верхнего подшипникового узла позволяет  [c.183]

Схема насоса с опорами вала, работающими на перекачиваемом теплоносителе, и механическим уплотнением вала с чистой запирающей водой представлена на рис. 8.11. Вертикальный вал направляется двумя радиальными дроссельными гидростатическими подшипниками 2 и 8. Нижний подшипник питается горячей водой с напора осевого рабочего колеса 1 при помощи винтового насоса 3 с многозаходными резьбовыми втулками, а слив из подшипника организован на всасывание рабочего колеса по каналам, выполненным в его ступице. Верхний радиальный ГСП питается охлажденной контурной водой от импеллера, выполненного заодно с пятой 7. В подшипниках применима пара трения сталь по стали. Осевая сила воспринимается двухсторонним гидростатическим осевым подшипником, работающим на охлажденном теплоносителе. Элементы, образующие пары трения, изготовлены из силицированного графита. Сегментные самоустанавли-вающиеся колодки снабжены ребрами качания и опираются на рессоры. Для снятия тепла, выделяющегося в осевом и верхнем радиальном ГСП, в корпусе насоса встроен трубчатый холодильник 6. Поток воды из пяты-импеллера сначала попадает на осевой подшипник, затем в верхний рад1 альный ГСП, после чего, проходя через трубчатый холодильник, охлаждается, поступает в зазор между валом и корпусом насоса, снимает тепло с вала и вновь попадает в пяту-импеллер. Такая система циркуляции позволяет поддерживать постоянной температуру (примерно 70°С) в полости пяты, предохраняя тем самым уплотнение вала от воздействия высокой температуры со стороны проточной части ГЦН. Между полостью пяты и проточной частью расположен тепловой барьер, представляющий собой каналы, засверленные в корпусе насоса. Через трубчатый холодильник 6 теплового барьера циркулирует вода промежуточного контура, имеющая на входе температуру примерно 45 °С. В верхней части ГЦН размещено уплотнение вала, представляющее собой блок из трех пар торцовых уплотнений, работающих на холодной запирающей воде. Первая ступень предотвращает протечки запирающей воды в контур с перепадом давления на нем около 2 МПа, вторая ступень предотвращает протечки в атмосферу и работает под полным давлением запирающей воды, а третья ступень является резервной и автоматически включается в работу в случае выхода из строя второй ступени уплотнения.  [c.280]

Первая из них связана с необходимостью исключить как утечки рабочего тела, так и подсосы в компрессор—этим объясняется распространенность герметичных и бессаль-никовых компрессоров. Герметичные компрессоры вместе с двигателем заключены в герметичный кожух, через который проходят только всасывающий и нагнетательный трубопроводы и провода электродвигателя. В бессальниковом компрессоре двигатель встроен в картер машины необходимость в сальниковом уплотнении вала здесь отпадает.  [c.290]


На энергоблоках мощностью 500— 800 МВт может быть образовано 20—25 функциональных групп. На котельной установке выделяются следующие основные функциональные группы тягодутьевые установки, встроенные сепараторы, подвод топлива к котлу, горелки, молотковые мельницы, впрыски высокого давления, впрыски промперегрева на турбоустановке — собственно турбина (прогрев, разворот, нагружение и останов турбины), конденсационная установка, вакуумная система, циркуляционная система, система уплотнений турби-1ГЫ, подогреватели высокого давления. В отдельные функциональные группы объединяются также турбопитательный насос, деаэратор, Пуско-сбросные устройства, система охлаждения генератора. Укрупненная техническая структура УЛУ ФГ показана на рис. 6.75.  [c.483]

Создание достаточно жестких опор ЦНД, сохраняющих центровку ротора при всех режимах,— сложная и ответственная задача. Она связана с устройством корпусов опорных подшипников, встроенных в выходные патрубки или непосредственно опирающихся на фундаментные рамы. Первая из этих конструкций обеспечивает компактность агрегата и упрощает концевые уплотнения ЦНД, но в очень крупных, а особенно в тихоходных турбинах передача корпусу ЦНД через подшипник громадных нагрузок 10жет вызывать заметную деформацию корпуса. Кроме того, неравномерные температурные расширения корпуса приводят к некоторой расцентровке. Как альтернатива рассматриваются отдельно стоящие корпуса подшипников РНД и опирание внутреннего ЦНД непосредственно на фундамент.  [c.34]

Раскатчики грунта (рис. 12.18, а) являются самодвижущимися машинами непрерывного действия, предназначенными для образования скважин в грунте методом его постепенного уплотнения рабочим органом в виде конических катков 5, установленных на шейках эксцентрикового вала 2. Первый (направляющий) каток 4 свободно посажен на ось вала, а все остальные катки, с возрастанием их диаметров от лидерного к замыкающему катку, свободно посажены на шейки вала, каждая из которых, а следовательно и ось поддерживаемого ею катка, развернуты относительно предыдущей шейки на угол так, что при вращении вала происходит завинчивание всего устройства в осевом направлении (на скважину) с одновременным уплотнением грунта в стенках скважины обкатывающимися по ним катками. Реактивный момент воспринимается замыкающим катком с ребрами 1 по его периферии. Вращение валу передается от встроенного в замыкающий каток мотор-редуктора, питаемого электроэнергией от внешнего источника через кабель 5.  [c.353]

J — ГТУ 2 — электрогенераторы 3 — КУ 4 — ПТ 5 — конденсатор со встроенным пучком 6 — конден-сатные насос 1-й ступени 7 — БОУ 8 — конденсатные насосы 2-й ступени 9 — конденсатор пара уплотнений 10 — ПНД И — охладитель конденсата сетевых подогревателей 12 — деаэратор 13 — питательные насосы НД 14 — питательные насосы ВД 15 — насосы рециркуляции питательной воды ГПК 16 — БРОУ ВД 17 — система подготовки подпиточной воды теплосети 18 — водо-водяной теплообменник (ВВТ) под-питочной воды теплосети 19, 20 — насосы рециркуляции испарительных контуров НД и ВД КУ 21 — под-питочные насосы теплосети 22 — насосы конденсата греющего пара сетевых подогревателей Б1 и Б2 — ПСГ-1 и ПСГ-2 БЗ и Б4 — ПСВ-1 и ПСВ-2 HI и СН2 — сетевые насосы первого и второго подъемов давления КСН — коллектор собственных нужд  [c.405]

На рис. 13.2 показана упрощенная пусковая схема турбины, состоящей из ЦВД и двухпоточного ЦНД. Для того чтобы не мешать пониманию процессов, происходящих при начальном этапе пуска, который ведется на конденсационном режиме, на схеме не показаны регулируемые отборы пара на сетевые подофеватели и теплофикационная установка (которые подключаются на последних этапах пуска), органы регулирования отборов (клапаны или диафрагмы в ЧНД), схематически показана система регенерации турбины, схема уплотнений содержит только трубопроводы, необходимые при анализе пусковых операций, не показан встроенный в конденсатор теплофикационный пучок. Многие из этих элементов будут рассмотрены ниже.  [c.377]

Навесные многосекционные внброуплотнителн применяют для уплотнения несвязных грунтов и гравийно-щебеночных оснований. Они состоят из четырех, шести или 12 виброплит, представляющих собой поддоны с жестко присоединенными к ним Двухвальными дебалансными вибровозбудителями со встроенными электродвигателями. При числе виброплит четыре или шесть их устанавливают в один ряд, а при 12 — в Два ряда. Такие виброуплотнители при работе на гравийно-щебеночных до-роясных основаниях показывают более высокие производительность и качество уплотнения, чем самоходные катки. К тому же в отличие от катков они не дробят уплотняемый материал.  [c.361]


Смотреть страницы где упоминается термин Уплотнения встроенные : [c.539]    [c.383]    [c.371]    [c.251]    [c.62]    [c.136]    [c.88]    [c.111]    [c.6]    [c.45]    [c.189]    [c.322]    [c.484]    [c.254]   
Основы конструирования Книга2 Изд3 (1988) -- [ c.410 ]



ПОИСК



Двухрядные сферические роликоподшипники со встроенными уплотнениями фирмы

Подшипники с встроенными уплотнениями



© 2025 Mash-xxl.info Реклама на сайте