Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Гиперболическая система уравнени граничные условия для

Известно 1—4], что определяющие уравнения для напряжений и скоростей теории плоского пластического течения жесткопластического тела приводятся к системе четырех квазилинейных дифференциальных уравнений первого порядка, которые относятся к гиперболическому типу. Их характеристики в физической плоскости совпадают с линиями скольжения и траекториями максимальных касательных напряжений. Построение полей напряжений и скоростей сводится к решению последовательности краевых задач с граничными условиями для напряжений и скоростей. Обычно вначале решаются краевые задачи для напряжений, связанных с уравнениями характеристик, и строится поле характеристик. Затем строится поле скоростей в пластической области при совпадении жесткопластических границ с характеристиками. После этого проверяется условие неотрицательности диссипативной функции и несущая способность принятых жестких областей 2, 3]. Для некоторых типов задач плоского пластического течения со смешанными граничными условиями разработаны методы построения полных решений, в которых вначале строится поле скоростей в плоскости характеристик или в плоскости годографа с использованием кинематических граничных условий на контуре инструмента, а затем строится поле напряжений и вычисляются характеристики в физической плоскости [5—7]. В этих решениях жесткопластические границы также совпадают с характеристиками. В [8, 9] разработан метод решения задач плоского пластического течения с использованием криволинейных координат, совпадающих с линиями тока и ортогональными к ним направлениями, и рассмотрены случаи пластического течения, в которых линии тока являются логарифмическими спиралями.  [c.54]


Наиболее эффективные для численного решения газодинамические модели, описывающие стационарные вязкие течения, основаны на параболических или гиперболических, т.е. неэллиптических системах уравнений. Эти уравнения являются эволюционными по продольной координате, а задача Коши для них является корректной [12-14]. Поэтому их решение может быть найдено быстрыми маршевыми методами за один проход вниз по потоку [4, 5, 8, 12-14]. В дальнейшем эти модели будем называть неэллиптическими, хотя это не означает, что с их помощью нельзя учесть граничные условия для искомых функций на правой границе области течения. Например, параболическая система уравнений модели узкого канала [15] точно описывает стационарное существенно дозвуковое течение вязкой несжимаемой жидкости в цилиндрических трубах постоянного сечения (течение Гагена-Пуазейля). Заданное значение давления в выходном сечении трубы учитывается с помощью интегральной величины - значения массового расхода жидкости через трубу. Передача информации вверх по потоку в неэллиптических моделях учитывается неявно, в данном случае, интегрально.  [c.31]

Решение краевой задачи. Введем произвольную характеристику первого семейства д1. В силу того, что при сверхзвуковых скоростях уравнения (1.6)-(1.9) имеют гиперболический тип, форма отрезка дЬ не влияет на обтекание отрезка ад. Поэтому, если контур аЬ обладает минимальным сопротивлением при заданной характеристике ае и определенных величинах Ф, Г, то и отрезок дЬ должен иметь минимальное сопротивление при фиксированной характеристике д1 и своих фиксированных величинах Ф, X. В противном случае уменьщение сопротивления отрезка дЬ привело бы к уменьщению сопротивления всего контура аЬ. На участке 1Ь выполняются уравнения (2.15), (2.28)-(2.30), а в точке Ь — граничное условие (2.24). Условия непрерывности функций а, 1 , в точке I и первое условие из (2.12) также удовлетворяются. Но если участок дЬ контура обладает минимальным сопротивлением, то в точке I должно выполняться и условие трансверсальности (2.34), записанное для 4/ Это условие в силу произвольности выбранной характеристики д1 должно выполняться на всей характеристике ЬН. Поэтому оно должно являться интегралом системы уравнений (2.11), (2.15), (2.28)-(2.30).  [c.78]

Для отыскания постоянных D , D2, D3, необходимо задать граничные условия по концам балки. Граничные условия, выраженные через Du. .., Di, представляет собой систему четырех линейных алгебраических однородных уравнений относительно Du. .., D4. Нас интересует ненулевое решение системы, так как нулевому (одновременное равенство нулю Du. .., Di) отвечает Z(z) = о, т. е. отсутствие колебаний. Система линейных однородных алгебраических уравнений имеет решение, отличное от нуля, тогда и только тогда, когда определитель системы равен нулю. Уравнение, получаемое в результате приравнивания определителя системы уравнений относительно Du , Di нулю, в свою очередь представляет собой трансцендентное (содержащее тригонометрические и гиперболические функции) уравнение относительно и. Из этого уравнения и находим корни (бесконечное число корней), каждому из которых соответствуют свои частота и форма колебаний.  [c.180]


В простейшем и наиболее важном для приложения случае линейной теории однородных изотропных упругих тел задача сводится к разысканию интегралов вырожденной гиперболической системы дифференциальных уравнений теории упругости или системы уравнений термоупругости, которая не относится к классическим каноническим типам, удовлетворяющих в некоторой области D X [О, оо) заданным начальным и граничным условиям (I, 14 и 15).  [c.312]

Таким образом, рассматривается задача Коши для гиперболической системы квазилинейных уравнений с пятью неизвестными функциями от трех независимых переменных. Область, в которой ищется решение при 2>2, ограничена поверхностью тела, ударной волной, а также плоскостью 2=2. Течение симметрично относительно плоскостей 0 = 0, я и при 0 = 0 и г[ = тс будем иметь дополнительные граничные условия симметрии  [c.218]

Возможный способ решения смешанных задач состоит в рассмотрении их как нестационарных и использовании процесса установления по времени. В основе такого приема лежит физический факт, что стационарное течение на достаточно большом отрезке времени при неизменных внешних условиях является пределом нестационарного течения. Численные эксперименты подтверждают, что стационарное решение задач газовой динамики может быть найдено как предел при 1- о° нестационарного-решения при стационарных (не зависяш их от времени) граничных условиях. С этой целью в стационарные уравнения вводится новая независимая переменная — время, в результате чего сложные эллиптико-гиперболические краевые задачи заменяются на смешанные задачи для гиперболической системы уравнений нестационарной газовой динамики, для которых разработаны эффективные численные методы решения. Начальные условия могут быть заданы довольно свободно, так как в процессе установления решения по времени их влияние ослабевает и процессом управляют стационарные граничные условия.  [c.268]

Рассмотрение итерационных процессов выполнения граничных условий позволяет сделать и некоторые чисто математические заключения. В теории оболочек можно говорить о возмущенной и невозмущенной краевых задачах. Под первой подразумевается интегрирование неупрощенных уравнений с учетом всех (тангенциальных и нетангенциальных) граничных условий, а вторая заключается в интегрировании предельных (при = 0) уравнений с учетом одних тангенциальных условий. Возмущенная краевая задача в теории оболочек всегда представляет собой корректно поставленную задачу типа Дирихле. Однако вырожденная задача теории оболочек может оказаться в том или ином смысле некорректной. В ней может иметь место несовпадение числа граничных условий с порядком уравнений, несоответствие типа уравнений типу краевой задачи (может получиться, например, задача Дирихле для гиперболической системы или задача Коши для эллиптической системы) и т. д. Очевидно, что все такие неправильности невозмущенной задачи оказывают существенное влияние на характер напряженного состояния оболочки, и их полезно иметь в виду при разработке любых подходов к фактическому решению задачи (в том числе и непосредственного счета на ЭЦВМ). Если стать на путь приближенных подходов к решению краевых задач теории оболочек, то здесь результаты настоящего раздела находят непосредственное применение. Исходное приближение каждого из рассмотренных итерационных процессов можно рассматривать как приближенный метод решения соответствующей краевой задачи. Получаемые таким образом результаты при желании можно уточнять, увеличивая количество итераций.  [c.272]

В случае решения гиперболической системы уравнений для невязкого газа методом характеристического типа, в котором решение продвигается по слоям на фиксированной сетке, это условие является, конечно, не чем иным, как условием Куранта— Фридрихса — Леви (см. Курант, Фридрихе и Леви [1928]). Однако в литературе описаны устойчивые и достаточно точные решения, в которых этот критерий не выполняется. Известно также, что подобное условие возникает для более простых уравнений из-за постановки специальных граничных условий (Чорин, частное сообщение).  [c.341]


В научной литературе встречается много приближенных уравнений, описывающих колебания вырожденных систем [8, 22, 23, 30], которые основаны на тех или иных предпосылках физического характера о поведении продольных и поперечных усилий по сечению в вырожденной системе и других механических величин. Затем появились различные уточнения классических уравнений колебаний, зачастую не согласующиеся между собой. В последние годы для вывода приближенных уравнений колебаний вырожденных систем стали применяться математические подходы, основанные на приближенном решении точной трехмерной задачи теории упругости или вязкоупругости с заданными начальными и граничными условиями, характеризующими как геометрию вырожденной системы, так и условия закрепления границ этих систем [22, 23, 43]. Однако каким бы из подходов не пользоваться, всегда должно выполняться очевидное условие — приближенные дифференциальные или инте-гродифференциальные уравнения колебаний должны принадлежать к уравнениям гиперболического типа [8].  [c.226]

Излагаются методы эффективного построения этих решений и много внимания уделяется обстоятельствам, при которых решения существуют и единственны. Эти вопросы в безмоментной теории решаются нетривиально. Общая линейная краевая задача моментной теории оболочек единообразна она заключается в интегрировании эллиптической системы уравнений с выполнением в каждой точке края (или краев, если область многосвязна) четырех граничных условий. Она всегда имеет единственное решение. Однако при переходе к описанной выше безмоментной краевой задаче картина становится весьма пестрой, так как тип уравнений, подлежащих интегрированию, может оказаться любым (эллиптическим, гиперболическим и параболическим). Различными по своему характеру оказываются и краевые задачи безмоментной теории это могут быть задачи типа Дирихле, задачи типа Коши, а также задачи, не предусмотренные существующей классификацией. К тому же может существовать несоответствие между типом краевой задачи безмоментной теории и типом уравнений, для которых ее надо решать. Например, задачу Дирихле иногда приходится решать для гиперболического уравнения, а задачу Коши — для эллиптического. Все это приводит к тому, что теоремы существования и единственности для краевых задач безмоментной теории формулируются далеко не единообразно и в них вопрос не всегда решается положительно. Однако такая ситуация не свидетельствует о принципиальной порочности самой идеи выделения в самостоятельное рассмотрение краевой задачи безмоментной теории. Каждая из описанных выше странностей краевых задач безмоментной теории свидетельствует об определенных особенностях искомого напряженно-деформированного состояния оболочки. Для широкого класса задач это будет показано в части IV.  [c.174]

Методы получения решений, удовлетворяющих граничным условиям, требуемым в практических приложениях, основаны на принципе Римана, согласно которому для класса уравнений в частных производных гиперболического типа интегралы, имеющие различную аналитическую форму, могут гладко сопрягаться вдоль определенных линий скольжения, т. е. вдоль той или иной из характеристических кривых данной системы дифференциальных уравнений (см. т. 1, стр. 625). Раньше внимание концентрировалось на вопросе о том, какую форму следует припи-  [c.556]

Наряду с углубленными экспериментально-теоретическими исследованиями самого вида условия прочности (условия предельного состояния), в механике грунтов интенсивно развивались математические методы решения задач о предельных напряженных состояниях грунтовых массивов. Это было связано с тем, что некоторые задачи (плоская и осесимметричная) при определенных граничных условиях, формулируемых в напряжениях, оказываются статически определимыми, если предположить, что в каждой точке рассматриваемой в задае области грунтового массива среда находится в предельном напряженном состоянии. При этих условиях соответствующая математическая задача формулируется для некоторой системы гиперболических уравнений, для решения которой можно воспользоваться хорошо развитым математическим аппаратом, в частности методом характеристик. В этом направлении после классических работ  [c.212]

Решение задачи строится с использованием функции напряжений Эри Ф(л , у), при этом Ф(л , у) представляется в форме бесконечных тригонометрических и гиперболических рядов. В результате удовлетворения граничных условий получены бесконечные системы уравнений относительно неизвестных коэффициентов Ф(л , у). Показано, что эти системы квазивполнерегулярны. Получены выражения для напряжений при у—О с выделенрюй особенностью [248]. Рассмотрены некоторые частные случаи и видоизменения первоначальной задачи. Например, рассмотрены задачи о полосе с периодическими включениями, параллельными ее кромкам, случай, когда эти включения перпендикулярны кромкам, а также плоскость с двоякопериодическими включениями.  [c.164]

В динамике пластин метод степенных рядов применял И. Т. Селезов [2.50] (1960). Он исходил из краевой задачи динамической теории упругости в перемешениях и рассматривал систему рекуррентных соотношений типа (20.9) и (20.10) и уравнения типа (20.11), вытекающие из граничных условий, как общую бесконечную систему дифференциальных уравнений, эквивалентную исходной краевой задаче (это справедливо при условии равномерной сходимости рядов). В дальнейшем требуется введение каких-либо ограничений, что можно сделать различным путем. Поэтому методом степенных рядов можно получить бесконечное множество аппроксимаций. Цель состояла в построении гиперболических аппроксимаций. Было показано, что при усечении системы до какого-либо порядка получается замкнутая система уравнений, которая может быть приведена к нескольким или одному дифференциальным уравнениям более высокого порядка. Если при этом сохранить все пространственно-временные дифференциальные операторы до определенного порядка включительно [2.52] (1961), то полученная система уравнений будет гиперболической. Это условие является достаточным для построения гиперболических аппроксимаций. Приведем краткое изложение этих результатов. Рассмотрим упругое поле, характеризуемое пространственными ортогональными координатами Хи Х2, Хз и временной координатой t. Причем ось Охз является прямой, а криволинейные ортогональные координаты Х и Х2 отсчитываются в плоскости Хз = 0. Выделим слой —оо<х1<°о, —оэ<х2<оэ, —к<Хз<к и положим, что изменение поля в зависимости от координат и Х2 характеризуется некоторым параметром I, который значительно больше толщины слоя 2к  [c.137]



Смотреть страницы где упоминается термин Гиперболическая система уравнени граничные условия для : [c.43]    [c.246]    [c.126]   
Линейные и нелинейные волны (0) -- [ c.129 ]



ПОИСК



Гиперболическая система

Гиперболическая система уравнени

Гиперболические уравнении

Граничные уравнения

Граничные условия

Линеаризация гиперболической системы дифференциальных уравнений. Граничные условия

Уравнения и граничные условия



© 2025 Mash-xxl.info Реклама на сайте