Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Относительная размерность фактора

Операция сопряжения 130 Описание физической системы 19в Определение симметрии 19в Относительная размерность фактора 174 Относительно компактное подмножество 79 Отношение двойственности 133 Отображение аффинное 200  [c.418]

Влияние масштабного (размерного) фактора. Следует иметь Б виду, что припуск на участках, имеющих относительно меньшую поверхность, снимается при доводке более интенсивно, чем на участках с большей поверхностью. Поэтому зачастую участки, имеющие большую поверхность, приходится подвергать дополнительной доводке более короткими притирами, не затрагивая при этом участков с меньшими поверхностями. Учитывая это, при конструировании плунжерных и золотниковых пар следует стремиться с созданию по возможности одинаковых по поверхности участков на прерывающихся поверхностях, что в ряде случаев может быть достигнуто путем введения дополнительных кольцевых канавок на притираемых поясках плунжеров и т, п.  [c.647]


Позже (см. раздел 8) с помощью других доказательств покажем, что это строение идентично эвтектической структуре, при которой структура жидкости относительно более хаотична. Простой анализ такого типа может быть осложнен любой структурной зависимостью трех межатомных потенциалов. Этим и влиянием размерного фактора или других факторов можно объяснить большое разнообразие опубликованных изотерм вязкости для металлических систем. Трудно судить о целесообразности такой работы без ясного понимания контролирующих факторов. Это объяснение может быть получено из результатов прямых структурных измерений в жидких сплавах (см. раздел 1), что в принципе позволяет вычислить межатомные потенциалы и, следовательно, вязкость [24].  [c.92]

Связь области значений относительной размерности с установленной ранее классификацией факторов дается следующей теоремой  [c.175]

Если 31 —фактор типа //[, то путем выбора постоянного множителя мы можем добиться, чтобы область значений относительной размерности d ( ) совпадала с интервалом [О, 1].  [c.175]

Оператор проектирования Р из алгебры фон Неймана называется минимальным (другие названия точка или атом), если Р ФО п если из того, что Q е 9 , причем Q<3 S РЖ, следует , что оператор проектирования Q совпадает либо с О, либо с Р. Из изложенной выше классификации факторов, а также из общих свойств относительной размерности ясно, что фактор допускает минимальные операторы проектирования в том и только в том случае, если он дискретен. Кстати сказать, это утверждение остается в силе [77, гл. 1, 8, п. 3, следствие 1] для общих алгебр фон Неймана. Данное обстоятельство свидетельствует о серьезном недостатке тех подходов, использующих исчисление высказываний, которые основаны на предположении о существовании минимальных операторов проектирования. Для физика может представить интерес тот факт, что еще фон Нейман высказывал (хотя, насколько можно судить, и без достаточных оснований) предположение о том, что в физике могут встретиться факторы не только типа I, но и других типов. Фон Нейман считал особенно вероятным появление факторов типа П,, указывая на то, что на этих факторах (так же, как и на факторах типа 1 ) существует относительная размерность, нормированная к 1. Следовательно, на множестве всех операторов проектирования факторов типа П можно ввести определение конечной равномерной априорной вероятности. Как мы увидим позднее, другие факторы действительно встречаются в различных конкретных физических моделях.  [c.176]


Кроме того, относительная стабильность сверхструктуры возрастает при увеличении электрохимического фактора, а также при увеличении разницы между атомными диаметрами растворенного элемента и растворителя. Влияние электрохимического фактора легко понять, так как чем он больше, тем больше тенденция атомов растворенного элемента к тому, чтобы окружить себя атомами растворителя. Влияние размерного фактора также понятно, так как чем больше искажения в решетке, тем сильнее должна проявляться тенденция уменьшить их вследствие перераспределения атомов. Исходя из этой точки зрения.  [c.158]

Решая (1.80) относительно сеточной функции щ, найдем таблицу значений, аппроксимирующую решение краевой задачи (1.77). При уменьшении шага Л сетка становится все гуще , а таблица значений сеточной функции—все подробнее. При неограниченном стремлении шага к нулю можно было бы получить значения искомой функции в каждой точке области. Однако в реальных случаях степень приближения к точному решению ограничивается рядом факторов, важнейшим из которых является размерность результирующей системы уравнений (1.80).  [c.44]

Скорость диспергируемых частиц зависит от многих факторов. Используя теорию размерности и физические соображения относительно механизма диспергирования, которые были даны ранее, для среднестатистической скс рости диспергируемых частиц по нормали к обтекаемой поверхности имеем следующее выражение  [c.248]

Коэффициент Шези имеет размерность корня квадратного из ускорения, что непосредственно следует из уравнения (4.73), и обычно выражается в м /с. Этот коэффициент зависит от тех же факторов, что и коэффициент >. (от числа Рейнольдса, относительной шероховатости) и может, вообще говоря, быть найден пересчетом формул для X в соответствии с формулой (4.73). На практике, однако, при расчете течений в открытых руслах пользуются специальными формулами для определения коэффициента Шези, отражающими от-  [c.195]

Размерный износ зависит от большого количества факторов [10] и характеризуется относительным (удельным) износом, отнесенным к 1000 м пути резания , , 1000 Пуд = —J—,  [c.134]

Однако в достаточной степени обобщенных зависимостей размерного износа инструмента от указанных факторов пока нет. Поэтому часто, определяя размерный износ для обрабатываемой партии деталей, исходят из ориентировочных значений относительного износа или задаются допустимым для данного вида обработки размерным износом инструмента (табл. 29).  [c.74]

Смысл получения критериальных уравнений, связывающих определяемые критерии с определяющими, состоит в том, что число новых безразмерных переменных и постоянных величин, входящих в основные уравнения, а также в начальные и граничные условия, оказывается меньше числа размерных величин, существенных для исследуемого процесса. А. А. Гухман подчеркивает, что для процесса важно не влияние отдельных факторов, а взаимодействие между ними, их относительное влияние. Теория подобия позволяет рассматривать сразу совокупное в целом влияние факторов на процесс. Интенсивность эффектов определяют соотношения операторов, входящих в дифференциальные уравнения. Например, р(Оц/Ут) отражает инерционную силу, а оператор — силу  [c.233]

Точность совмещения осей сопрягаемых деталей на сборочной позиции, обеспечиваемая сборочным автоматом, характеризуется суммарной погрешностью Л , которая зависит от точности относительного положения ориентирующих поверхностей автомата, точности изготовления сопрягаемых деталей и других факторов. Определение суммарной погрешности А , основано на решении пространственной размерной цепи системы собираемые детали — сборочный автомат, где — является замыкающим звеном.  [c.577]

Разработанный здесь метод численного определения матричной функции Грина обладает рядом достоинств, позволяющих рекомендовать его к широкому практическому использованию. В нем эффективно преодолевается сильная численная неустойчивость дифференциальных уравнений неклассической теории слоистых оболочек не вызывает никаких затруднений также и переменность коэффициентов этих уравнений. Сам метод матричной функции Грина как метод решения краевых задач механики оболочек имеет известные преимущества перед другими. Так, в нем не возникает проблем, связанных с построением ортогонального координатного базиса, как в методе Бубнова — Галеркина, или с большой размерностью, а часто и плохой обусловленностью алгебраической системы, как в методе конечных разностей. В задачах устойчивости оболочек использование данного метода позволяет легко и естественно учесть такие факторы, как до-критические деформации, неоднородность распределения докритических усилий в отсчетной поверхности оболочки, краевые условия задачи. В то же время число точек разбиения отрезка интегрирования, необходимое для аппроксимации интегрального оператора, относительно невелико, что приводит к алгебраической задаче невысокой размерности.  [c.222]


Иаменение размеров и формы тела под действием силовых факторов называется деформацией . Деформации связаны с перемещениями точек, линий и плоскостей. Перемещения по прямой называются линейными, а перемещения, вызванные поворотом линий и плоскостей, называются угловыми. Линейная деформация имеет размерность длины, а угловая — размерность угла,. Измеренная величина линейной деформации на данном участке называется абсолютной деформацией, а отношение абсолютной деформации к длине участка — относительной деформацией.  [c.4]

Размерные цепи. Выбор допусков и посадок, определяющих положение деталей и узлов относительно друг друга, зависит от многих факторов — конструктивных, технологических и эксплуатационных. Многие задачи достижения точности взаимного расположения отдельных деталей в машине решаются на основании теории размерных цепей.  [c.246]

Выше шла речь о точности сборки, характеризуемой размерными параметрами данного сопряжения. Но кроме этих параметров — зазоров и натягов, характер сопряжения в значительной степени зависит и от других факторов от точности взаимного положения деталей относительно друг друга, от точности форм сопрягающихся поверхностей и, наконец, от микрогеометрии этих поверхностей.  [c.30]

Изучается точечная устойчивость внутренних положений равновесия, которая может обеспечиваться структурой уравнений без каких-либо дополнительных предположений. В общем же случае исследование устойчивости или неустойчивости внутренних положений равновесия сводится к изучению соответствующих свойств некоторой новой системы уравнений, полученной из исходной, которая имеет меньшую размерность и допускает применение хорошо разработанных методов теории устойчивости, поскольку лишена факторов, затрудняющих изучение исходной системы (неразрешенность относительно старших производных, разрывность правых частей уравнений). Ири определенных условиях доказана теорема об устойчивости относительной границы множества положений равновесия, как необходимом и достаточном условии устойчивости всего этого множества.  [c.57]

САУ для перенастройки системы СПИД с обработки одного типоразмера деталей на другой. При перенастройке системы СПИД с обработки деталей одного типоразмера на другой возникает ряд трудностей, на преодоление которых затрачивается много времени наладчика высокой квалификации. При каждой переналадке требуется, как известно, расположить будущее мгновенное поле рассеяния сОт. порождаемое совместным действием случайных факторов, относительно верхней или нижней границы поля допуска на размер деталей, для обработки которых переналаживается система СПИД. При размерном износе режущего инструмента, порождающего увеличение размера обрабатываемых деталей, партии, поле будущего рассеяния надо расположить ближе к нижней границе поля допуска, при размерном износе в противоположном направлении — к верхней границе.  [c.43]

Указанный метод компенсации влияния систематического фактора износа инструмента заключается в том, что относительное положение инструмента и детали корректируется специальными механизмами в соответствии с результатами измерений одной или определенной группы деталей, уже прошедших обработку. Как видно из графика на рис. 2.17, а, при подходе контролируемого параметра к установленной границе допуска подается команда на изменение положения инструмента, т. е. происходит подналадка системы СПИД, Положение инструмента изменяется на величину образовавшегося размерного износа. Подналадки периодически повторяются до момента полного износа инструмента, после чего его необходимо заменить.  [c.159]

Смещение центра группирования порождается действием систематических факторов размерным износом режущего инструмента температурными деформациями системы СПИД, которые приводят к изменению относительного положения детали и инструмента, т. е. к изменению размера статической настройки.  [c.326]

Знак энтальпийного члена зависит от соотношения размеров, валентности компонентов и других факторов. Из приложения XVIII видно, что эти системы представляют собой приблизительно такой случай. В системах Ag—Au, Au—Си и d—Mg относительно высокие значения факторов электроотрицательности несколько повышают значения энтальпии расплава (исключение составляет система Au—Си с высоким размерным фактором) и в твердом состоянии в системах d—Mg и Au—Си приводят к упорядочению. Термодинамические параметры почти симметричны (данные для Au—Си несколько сомнительны [131], но здесь асимметрия может быть вызвана большим размерным фактором) и указывают, как и следует ожидать из сходства свойств компонентов каждой из этих систем, на слабую зависимость от состава характеристик связи, координационного числа и других факторов. Избыточные свободные энергии сплавов могут быть или положительными, или отрицательными. Эти данные наводят на мысль, что факторы, определяющие растворимость в твердом состоянии, воздействуют и после плавления, например размерный фактор явно может контролировать легкость упаковки в жидком состоянии  [c.47]

Размерный фактор в некоторых жидких системах, содержащих /В-металл в качестве растворителя, можно рассматривать с учетом фактора относительной валентности. В твердом состоянии металлы /В-групиы лишь слегка растворимы в металлах с высокой валентностью, но обычно являются довольно хорошими растворителями для этих металлов по причине, которую можно связать с гомеополярной связью в металле высокой валентности [47].  [c.51]


Поэтому жидкие сплавы в этих системах могут вести себя таким же образом в отношении чистых компонентов если последние показывают аномальную структуру (например, Bi—Sb), тогда так же будут вести себя и сплавы, степень отклонения сплавов от поведения свободных электронов, например, должна быть подобной степени отклонения для чистых компонентов. Желательно прямое исследование этих систем кажется, невозможно получить много информации о структуре из физических измерений. Необходимо далее изучать их электронные свойства, чтобы установить достоверность существования аномалий удельного сопротивления при атомном отношении 2 1 или 1 2 и определить предел, до которого можно использовать модель свободных электронов, чтобы описать эти свойства. Размерный фактор может влиять на зависимость от состава некоторых электронных свойств, способствуя образованию составов сплавов с относительно эффективной или неэффективной упаковкой атомов и, следовательно, влияя на зависимость от состава величин g(r) и а(К). Этот эффект также следует распознавать при изучении дифракции и, возможно, оценивать при определении измерений плотности, вязкости или даже термодинамических свойств. Аномальная зависимость магнитной восприимчивости от состава в системе Fe—Со может быть ложной, как и отсутствие скачка в температурном коэффициенте удельного сопротивления в системе Bi—Sb. Явная простота этих систем побудила исследователей игнорировать их. С теоретической точки зрения с ними легче обращаться, чем с более сложными спла-  [c.169]

Ясно, что потребуется очень много информации, прежде чем будет предложена точная эвтектическая модель. Возможно, прямые структурные измерения не будут продуктивными, пока не станут чрезвычайно точными. Электронные измерения не особенно чувствительны к очень малым изменениям структуры, вызываемым изменениями состава и температуры. Возможно, вязкость—-наиболее чувствительное свойство вместе с прямыми термодинамическими измерениями (если их можно сделать с достаточной точностью). Наибольший эффект, если предложенная здесь модель верна, должен быть в эвтектических системах DI, поэтому особенно интересно подробно исследовать выбранное свойство при очень плотном расположении экспериментальных точек по шкалам составов и температур, особенно при температурах и составах, близих к эвтектическим. Помимо этого, эвтектические системы в общем и целом нуждаются вместе со всеми остальными системами расплавленных металлов в более подробном исследовании всех физических свойств. В этом замечании также учтено и замечание, сделанное относительно необходимости установления степени свободы электронов в системах с твердыми растворами кроме того, эвтектические системы дают возможность подробно исследовать влияние размерного фактора на термодинамические и другие свойства металлических растворов. Если размерный фактор обусловливает в результате состав  [c.172]

Фактор относительной валентности определяется разностью валентностей компонентов и играет важную роль при дальнейшем рассмотрении вопросов образования и устойчивости электронных соединений. Этот фактор обсуждается на основе рассмотрения изменения электронной концентрации в пределах зоны Бриллюэ-на данной кристаллической решетки. Несмотря на то что образование и y T0fl4HB0 tb фАз Лайёса определяются главным образом размерным фактором, в целом ряде случаев наряду с ним играет роль и электронный фактор [8, 24, 68], влияние которого будет обсужг даться ниже. .  [c.221]

Электроотрицательность элемента является мерой способности его атомов принимать валентные электроны, и поэтому относительные электроотрицательности элементов качественно характеризуют вероятность образования промежуточных фаз и природу связи в них. Электроотрицательности элементов были недавно использованы для обсуждения характера химической связи в полупроводниковых промежуточных фазах. К этому вопросу мы вернемся позднее при обсуждении полупроводников. Природу связи между атомами в промежуточных фазах до некоторой степени характеризует также координационное число. Вещества с преимущественно ковалентным или ионным характером связи имеют координационное число меньше восьми, тогда как металлы могут иметь координационные числа до 16. В тех структурах, где существенную ролв играет размерный фактор, координационные числа должны быть максимальными, а характер связи между атомами преимущественно металлическим.  [c.221]

Теорема 15. Пусть 31 — фактор, — мнооюество всех его операторов проектирования и d — относительная размерность на 9 . Тогда возможны следующие случаи-.  [c.175]

Если 31 — фактор типа I, то путем выбора постоянного мно-окителя мы можем добиться, чтобы область значений относительной размерности d (9 ) совпадала либо с О, 1,2,...,п), либо с О, 1, 2,. .., оо (в первом случае говорят, что 31— фактор типа / , во втором — типа / ).  [c.175]

То положение, что область значений d ( ) относительной размерности d может быть лишь пяти типов (1 , 1 , П,, и III), было впервые доказано Мюрреем и фон Нейманом [282, теорема VIII, которые показали, что эта характеристика факторов инвариантна относительно алгебраических изоморфизмов. В качестве учебника здесь можно рекомендовать монографию Най марка [285], где эти результаты излагаются в основном со-  [c.175]

Теперь мы уже можем пояснить происхождение терминологии, используемой в классификации алгебр фон Неймана. Мюррей и фон Нейман классифицировали факторы по свойствам области значений относительной размерности, допускаемой этими факторами дискретные (1 , 1 ) или непрерывные (III, П , III), конечные (1 , П,) или бесконечные (т. е. собственно бесконечные) (1 , III), полуконечные (1 , 1 , IIi, П ) или чисто бесконечные (III).  [c.176]

Дюлака формальной заменой, сохраняющей е. Затем отбрасываются члены достаточно высокого порядка по х (выше трех для н ля с мнимой парой и выше пяти для двух мнимых пар). Полученное полиномиальное векторное поле инвариантно относительно группы вращений, изоморфной тору, размерность которого равна числу мнимых пар. Соответствующая факторси-стема, представляет собой семейство уравнений на плоскости, инвариантное относительно некоторой конечной группы движений плоскости. В классе таких семейств изучается версаль-ная деформация факторсистемы, соответствующей ростку е). Положения равновесия и инвариантные кривые фактор-систем интерпретируются как приближения к инвариантным торам и гиперповерхностям уравнений исходного семейства.  [c.27]

Под термодинамическим подобием понимается обычно сходство в характере изменения физических свойств у разных веществ в зависимости от изменения внешних факторов, например температуры или давления. Принципы выбора единой системы выражения для различных физлара-мет ров сформулированы, в частности, в работах Новикова [2], где безразмерные универсальные функции надлежит сравнивать при относительных значениях температуры и давления, а размерные множители представлять в виде комплексов, составленных из критических констант рассматриваемого вещества. Для более подробной разработки такой системы необходимо решить ряд вопросов, в частности, выбор относительных значений температуры и давления, распределение веществ -по группам, имеющим одинаковые безразмерные зависимости, вычисление размерных мно кителей и т. п.  [c.101]

Авторы работы [324] привели многочисленные примеры размерной нестабильности различных углеродистых и легированных сталей при термоциклировании, сопровождающемся полиморфными превращениями. Литые образцы мало изменяли свои размеры, горячедеформированные — сильно. В зависимости от того как вырезанный образец ориентирован относительно направления деформации, при термоциклах длина его увеличивалась или уменьшалась. Авторы [324] не обнаружили влияния скорости нагрева и охлаждения на формоизменение стали при термоциклировании. Линейные изменения образцоз при варьировании темпа смены температуры 12 и 80 град/сек были близкими. Коэффициент роста составлял приблизительно 0,1%, и наблюдалась относительная независимость его от числа циклов. Приведенные в работе [324] данные свидетельствуют о том, что при термоциклировании технических сталей возникают факторы, действие которых перекрывает эффект температурных градиентов. Причины необратимого формоизменения деформированной стали в указанной работе не обсуждаются, возможно, они связаны с текстурой и химической неоднородностью образцов.  [c.61]


Точность получаемых на детали размеров зависит от величины погрешностей, вносимых на каждом из трех этапов настройки системы СПИД. На универсальных металлорежущих станках функции управления и контроля технологического процесса выполняет рабочий. Он устанавливает и фиксирует на станке деталь, устанавливает в требуемое относительное положение рабочие органы станка, задает им необходимую скорость относительных перемещений. В процессе обработки рабочий осуществляет постоянный контроль за ходом технологического процесса, получая при этом дополнительную информацию. Он измеряет получаемые точностные показатели детали, сравнивает их с техническими требованиями и, в случае необходимости, производит соответствующую размерную поднастройку, переключение режимов резания или замену режущего инструмента. Таким образом, если при настройке универсальных станков точность выполнения каждого этапа контролирует рабочий, то в процессе автоматической перенастройки программных станков контроль отсутствует, так как цикл перенастройки и обработки происходит без непосредственного участия человека. Точность выполнения, каждого из трех этапов настройки зависит от большого количества различных факторов. Учесть аналитическим путем количество факторов, определяющих точность при автоматической перенастройке, не представляется возможным. Поэтому ставится задача создания самоподнастраивающихся станков-автоматов способных система-тически следить за точностью технологического процесса и при необходимости автоматически производить соответствующую поднастройку.  [c.336]


Смотреть страницы где упоминается термин Относительная размерность фактора : [c.174]    [c.43]    [c.172]    [c.123]    [c.174]    [c.176]    [c.164]    [c.50]    [c.155]    [c.289]    [c.151]    [c.145]   
Алгебраические методы в статистической механике и квантовой теории поля (0) -- [ c.174 ]



ПОИСК



Размерности

Размерный фактор

Ряд размерный



© 2025 Mash-xxl.info Реклама на сайте